首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Two of the main approaches in multiple criteria optimization are optimization over the efficient set and utility function program. These are nonconvex optimization problems in which local optima can be different from global optima. Existing global optimization methods for solving such problems can only work well for problems of moderate dimensions. In this article, we propose some ways to reduce the number of criteria and the dimension of a linear multiple criteria optimization problem. By the concept of so-called representative and extreme criteria, which is motivated by the concept of redundant (or nonessential) objective functions of Gal and Leberling, we can reduce the number of criteria without altering the set of efficient solutions. Furthermore, by using linear independent criteria, the linear multiple criteria optimization problem under consideration can be transformed into an equivalent linear multiple criteria optimization problem in the space of linear independent criteria. This equivalence is understood in a sense that efficient solutions of each problem can be derived from efficient solutions of the other by some affine transformation. As a result, such criteria and dimension reduction techniques could help to increase the efficiency of existing algorithms and to develop new methods for handling global optimization problems arisen from multiple objective optimization.  相似文献   

2.
《Optimization》2012,61(10):1661-1686
ABSTRACT

Optimization over the efficient set of a multi-objective optimization problem is a mathematical model for the problem of selecting a most preferred solution that arises in multiple criteria decision-making to account for trade-offs between objectives within the set of efficient solutions. In this paper, we consider a particular case of this problem, namely that of optimizing a linear function over the image of the efficient set in objective space of a convex multi-objective optimization problem. We present both primal and dual algorithms for this task. The algorithms are based on recent algorithms for solving convex multi-objective optimization problems in objective space with suitable modifications to exploit specific properties of the problem of optimization over the efficient set. We first present the algorithms for the case that the underlying problem is a multi-objective linear programme. We then extend them to be able to solve problems with an underlying convex multi-objective optimization problem. We compare the new algorithms with several state of the art algorithms from the literature on a set of randomly generated instances to demonstrate that they are considerably faster than the competitors.  相似文献   

3.
The problem Q of optimizing a linear function over the efficient set of a multiple objective linear program serves several useful purposes in multiple criteria decision making. However, Q is in itself a difficult global optimization problem, whose local optima, frequently large in number, need not be globally optimal. Indeed, this is due to the fact that the feasible region of Q is, in general, a nonconvex set. In this paper we present a monotonically increasing algorithm that finds an exact, globally-optimal solution for Q. Our approach does not require any hypothesis on the boundedness of neither the efficient set EP nor the optimal objective value. The proposed algorithm relies on a simplified disjoint bilinear program that can be solved through the use of well-known specifically designed methods within nonconvex optimization. The algorithm has been implemented in C and preliminary numerical results are reported.  相似文献   

4.
The problem of minimizing a convex function over the difference of two convex sets is called ‘reverse convex program’. This is a typical problem in global optimization, in which local optima are in general different from global optima. Another typical example in global optimization is the optimization problem over the efficient set of a multiple criteria programming problem. In this article, we investigate some special cases of optimization problems over the efficient set, which can be transformed equivalently into reverse convex programs in the space of so-called extreme criteria of multiple criteria programming problems under consideration. A suitable algorithm of branch and bound type is then established for globally solving resulting problems. Preliminary computational results with the proposed algorithm are reported.  相似文献   

5.
The problem (P) of optimizing a linear function over the efficient set of a multiple objective linear program has many important applications in multiple criteria decision making. Since the efficient set is in general a nonconvex set, problem (P) can be classified as a global optimization problem. Perhaps due to its inherent difficulty, it appears that no precisely-delineated implementable algorithm exists for solving problem (P) globally. In this paper a relaxation algorithm is presented for finding a globally optimal solution for problem (P). The algorithm finds an exact optimal solution to the problem after a finite number of iterations. A detailed discussion is included of how to implement the algorithm using only linear programming methods. Convergence of the algorithm is proven, and a sample problem is solved.Research supported by a grant from the College of Business Administration, University of Florida, Gainesville, Florida, U.S.A.  相似文献   

6.
In multiple criteria optimization an important research topic is the topological structure of the set Xe of efficient solutions. Of major interest is the connectedness of Xe, since it would allow the determination of Xe without considering non-efficient solutions in the process. We review general results on the subject, including the connectedness result for efficient solutions in multiple criteria linear programming. This result can be used to derive a definition of connectedness for discrete optimization problems. We present a counterexample to a previously stated result in this area, namely that the set of efficient solutions of the shortest path problem is connected. We will also show that connectedness does not hold for another important problem in discrete multiple criteria optimization: the spanning tree problem.  相似文献   

7.
The optimization problem of a nonlinear real function over the weakly-efficient set associated to a nonlinear multi-objective program is examined. Necessary first-order conditions for a suboptimal solution are proposed, assuming the convexity of the multi-objective program. Estimations of the optimal value are established and an algorithm for finding suboptimal solutions is proposed. The optimal value is approximated to any prescribed degree of accuracy using a weakly-efficient suboptimal solution.This work was done while the author was preparing his Ph.D. Thesis at the University of Melbourne, Australia. The author is thankful to Dr. B. D. Craven for his suggestions and helpful discussions and to Professor W. Stadler and the anonymous referees for their helpful comments and corrections.  相似文献   

8.
9.
Recently, researchers and practitioners have been increasingly interested in the problem (P) of maximizing a linear function over the efficient set of a multiple objective linear program. Problem (P) is generally a difficult global optimization problem which requires numerically intensive procedures for its solution. In this paper, simple linear programming procedures are described for detecting and solving four special cases of problem (P). When solving instances of problem (P), these procedures can be used as screening devices to detect and solve these four special cases.  相似文献   

10.
The weighted sums approach for linear and convex multiple criteria optimization is well studied. The weights determine a linear function of the criteria approximating a decision makers overall utility. Any efficient solution may be found in this way. This is not the case for multiple criteria integer programming. However, in this case one may apply the more general e-constraint approach, resulting in particular single-criteria integer programming problems to generate efficient solutions. We show how this approach implies a more general, composite utility function of the criteria yielding a unified treatment of multiple criteria optimization with and without integrality constraints. Moreover, any efficient solution can be found using appropriate composite functions. The functions may be generated by the classical solution methods such as cutting plane and branch and bound algorithms.  相似文献   

11.
The problem of optimizing some contiuous function over the efficient set of a multiple objective programming problem can be formulated as a nonconvex global optimization problem with special structure. Based on the conical branch and bound algorithm in global optimization, we establish an algorithm for optimizing over efficient sets and discuss about the implementation of this algorithm for some interesting special cases including the case of biobjective programming problems.  相似文献   

12.
Natural basic concepts in multiple-objective optimization lead to difficult multiextremal global optimization problems. Examples include detection of efficient points when nonconvexities occur, and optimization of a linear function over the efficient set in the convex (even linear) case. Assuming that a utility function exists allows one to replace in general the multiple-objective program by a single, nonconvex optimization problem, which amounts to a minimization over the efficient set when the utility function is increasing. A new algorithm is discussed for this utility function program which, under natural mild conditions, converges to an -approximate global solution in a finite number of iterations. Applications include linear, convex, indefinite quadratic, Lipschitz, and d.c. objectives and constraints.  相似文献   

13.
We deal with extended-valued nonsmooth convex vector optimization problems in infinite-dimensional spaces where the solution set (the weakly efficient set) may be empty. We characterize the class of convex vector functions having the property that every scalarly stationary sequence is a weakly-efficient sequence. We generalize the results obained in the scalar case by Auslender and Crouzeix about asymptotically well-behaved convex functions and improve substantially the few results known in the vector case.  相似文献   

14.
For a class of global optimization (maximization) problems, with a separable non-concave objective function and a linear constraint a computationally efficient heuristic has been developed.The concave relaxation of a global optimization problem is introduced. An algorithm for solving this problem to optimality is presented. The optimal solution of the relaxation problem is shown to provide an upper bound for the optimal value of the objective function of the original global optimization problem. An easily checked sufficient optimality condition is formulated under which the optimal solution of concave relaxation problem is optimal for the corresponding non-concave problem. An heuristic algorithm for solving the considered global optimization problem is developed.The considered global optimization problem models a wide class of optimal distribution of a unidimensional resource over subsystems to provide maximum total output in a multicomponent systems.In the presented computational experiments the developed heuristic algorithm generated solutions, which either met optimality conditions or had objective function values with a negligible deviation from optimality (less than 1/10 of a percent over entire range of problems tested).  相似文献   

15.
The efficient set of a linear multicriteria programming problem can be represented by a reverse convex constraint of the form g(z)≤0, where g is a concave function. Consequently, the problem of optimizing some real function over the efficient set belongs to an important problem class of global optimization called reverse convex programming. Since the concave function used in the literature is only defined on some set containing the feasible set of the underlying multicriteria programming problem, most global optimization techniques for handling this kind of reverse convex constraint cannot be applied. The main purpose of our article is to present a method for overcoming this disadvantage. We construct a concave function which is finitely defined on the whole space and can be considered as an extension of the existing function. Different forms of the linear multicriteria programming problem are discussed, including the minimum maximal flow problem as an example. The research was partly done while the third author was visiting the Department of Mathematics, University of Trier with the support by the Alexander von Humboldt Foundation. He thanks the university as well as the foundation.  相似文献   

16.
We consider a service/distribution system in which each of N activities is to be carried out at one or several facility locations. Each activity is to be assigned to one out of a specified set of configurations; each configuration is a specific subset of the set of L facilities being considered, along with a specific strategy for their use. We call such a system a multiactivity multifacility system and present a mathematical formulation for its optimal design that includes capacity restrictions at the facilities and the treatment of multiple criteria. The design problem is simply to choose an appropriate configuration for each of the N activities. We discuss various criteria, and we show that the multiactivity multifacility design problem includes many familiar discrete location problems as special cases. We introduce a 0–1 linear optimization model called the Team Generalized Assignment Problem (T-GAP) and show that parametric solution of a T-GAP will yield all efficient solutions of the multiactivity multifacility design problem with multiple criteria. Rather than attempting to find all efficient solutions, however, we advocate an interactive approach and describe an interactive branch-and-bound algorithm that solves the design problem as a finite sequence of T-GAP's.  相似文献   

17.
Optimization over the efficient set   总被引:2,自引:0,他引:2  
This paper deals with the problem of maximizing a function over the efficient set of a linear multiple objective program. The approach is to formulate a biobjective program with an appropriate efficient set. The penalty function approach is motivated by an auxiliary problem due to Benson.  相似文献   

18.
The purpose of this paper is to develop a useful technique for solving linear programmes involving more than one objective function. Motivation for solving multicriterion linear programmes is given along with the inherent difficulty associated with obtaining a satisfactory solution set. By applying a linear programming approach for the solution of two person–zero sum games with mixed strategies, it is shown that a linear optimization problem with multiple objective functions can be formulated in this fashion in order to obtain a solution set satisfying all the requirements for an efficient solution of the problem. The solution method is then refined to take into account disparities between the magnitude of the values generated by each of the objective functions and solution preferences as determined by a decision-maker. A summary of the technique is then given along with several examples in order to demonstrate its applicability.  相似文献   

19.
This paper addresses itself to the algorithm for minimizing the product of two nonnegative convex functions over a convex set. It is shown that the global minimum of this nonconvex problem can be obtained by solving a sequence of convex programming problems. The basic idea of this algorithm is to embed the original problem into a problem in a higher dimensional space and to apply a branch-and-bound algorithm using an underestimating function. Computational results indicate that our algorithm is efficient when the objective function is the product of a linear and a quadratic functions and the constraints are linear. An extension of our algorithm for minimizing the sum of a convex function and a product of two convex functions is also discussed.  相似文献   

20.
Linear bilevel programs with multiple objectives at the upper level   总被引:1,自引:0,他引:1  
Bilevel programming has been proposed for dealing with decision processes involving two decision makers with a hierarchical structure. They are characterized by the existence of two optimization problems in which the constraint region of the upper level problem is implicitly determined by the lower level optimization problem. Focus of the paper is on general bilevel optimization problems with multiple objectives at the upper level of decision making. When all objective functions are linear and constraints at both levels define polyhedra, it is proved that the set of efficient solutions is non-empty. Taking into account the properties of the feasible region of the bilevel problem, some methods of computing efficient solutions are given based on both weighted sum scalarization and scalarization techniques. All the methods result in solving linear bilevel problems with a single objective function at each level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号