首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An Optimization Problem with a Separable Non-Convex Objective Function and a Linear Constraint
Authors:Djangir A Babayev  George I Bell
Institution:(1) US West Advanced Technologies, 4001 Discovery Drive, Boulder, Colorado 80303, USA;(2) US West Advanced Technologies, 4001 Discovery Drive, Boulder, Colorado 80303, USA
Abstract:For a class of global optimization (maximization) problems, with a separable non-concave objective function and a linear constraint a computationally efficient heuristic has been developed.The concave relaxation of a global optimization problem is introduced. An algorithm for solving this problem to optimality is presented. The optimal solution of the relaxation problem is shown to provide an upper bound for the optimal value of the objective function of the original global optimization problem. An easily checked sufficient optimality condition is formulated under which the optimal solution of concave relaxation problem is optimal for the corresponding non-concave problem. An heuristic algorithm for solving the considered global optimization problem is developed.The considered global optimization problem models a wide class of optimal distribution of a unidimensional resource over subsystems to provide maximum total output in a multicomponent systems.In the presented computational experiments the developed heuristic algorithm generated solutions, which either met optimality conditions or had objective function values with a negligible deviation from optimality (less than 1/10 of a percent over entire range of problems tested).
Keywords:concave relaxation  upper bound  optimality conditions  heuristic algorithm
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号