首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A superhydrophobic coating applied in corrosion protection was successfully fabricated on the surface of aluminum alloy by chemical etching and surface modification. The water contact angle on the surface was measured to be 161.2° ± 1.7° with sliding angle smaller than 8°, and the superhydrophobic coating showed a long service life. The surface structure and composition were then characterized by means of SEM and XPS. The electrochemical measurements showed that the superhydrophobic coating significantly improved the corrosion resistance of aluminum alloy. The superhydrophobic phenomenon of the prepared surface was analyzed with Cassie theory, and it was found that only about 6% of the water surface is in contact with the metal substrate and 94% is in contact with the air cushion. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Superhydrophobic cerium oxide film was introduced to aluminum substrate by an in‐situ growth process and surface modification. Different molar ratios between Ce(NO3)3 · 6H2O and C6H12N4 were involved in this research. The morphologies, chemical compositions and wetting properties of the films were analyzed by scanning electron microscopy (SEM), energy dispersive X‐ray detector, Fourier transfer infrared spectrometer and water contact angle (WCA) measurement, respectively. A great WCA of 158.8o with a low angle hysteresis of about 3o was obtained. Combination of uniform hierarchical micro‐nanostructure as revealed by SEM together with the hydrophobic alkyl groups from stearic acid was found to be responsible for the superior superhydrophobic property. The corrosion resistance performance of the superhydrophobic surface was evaluated by immersing in sodium chloride aqueous solution, the WCA kept as high as 152.1o after immersion for 21 days, indicating our superhydrophobic surfaces had high chemical stability and durability in corrosive medium. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
A superhydrophobic Al surface was successfully fabricated by a facile and environmentally friendly method as the boiling water treatment and 3‐glycidoxypropyl trimethoxysilane (GPS) as well as carboxyl‐terminated polystyrene (PS‐COOH) modification. The fabrication procedure, morphology, composition, and corrosion resistance of the superhydrophobic Al surface were investigated. Results show that the treatment in the boiling water endows the Al surface with the porous and roughened structure, while the modification with GPS as well as PS‐COOH grafts the long PS chains onto the micro‐scale and nano‐scale hierarchical structure. Consequently, a superhydrophobic Al surface with a contact angle of 153.6° and a rolling angle of 3° is obtained. Additionally, a vast majority of surface area is covered by the air in the solid–liquid contact area for the superhydrophobic Al surface, and which can prevent the corrosive ions entering into the Al surface. As a result, the corrosion resistance is improved greatly. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
通过化学刻蚀和阳极氧化在AA2024铝合金表面制备超疏水表面。当化学刻蚀时间超过3 min时,表面在很宽pH值范围内显示出水静态接触角大于150°。SEM和AFM照片表明化学刻蚀时间决定了试样表面形貌和粗糙度。FTIR用来研究氟硅烷(G502)与AA2024表面的结合。结果说明FAS(氟硅烷)分子与铝合金表面的三氧化二铝发生反应,并在阳极氧化膜层表面展示出优异的结合性能。超疏水表面的耐腐蚀性能通过在质量分数为3.5%的NaCl溶液中进行动电位极化和交流阻抗(EIS)测试。电化学测试结果和等效电路模型显示出超疏水表面显著改善抗腐蚀性能。  相似文献   

5.
Three reusable and durable superhydrophobic nanofibrous filters were prepared by dip coating the nanofibrous fabric in the three different dispersed solutions of the newly modified nanoparticles (ZnO‐NSPO, AlOO‐NSPO, and titanium dioxide [TiO2]‐NSPO). The contact angle results proved that the TiO2‐NSPO coated nanofibrous polyacrylonitrile (PAN) filter was hydrophobic with the water contact angle (WCA) of 141° while the ZnO‐NSPO and AlOO‐NSPO coated nanofibrous PAN filters were superhydrophobic with the WCA of 168° and 152°, respectively. The as‐prepared filters can be utilized as an effective martial for oil‐water separation with separation efficiency of over 98%.  相似文献   

6.
In the present work, high temperature oxidation of HP40 alloy was carried out at 1050 °C under H2–H2O and air atmospheres; the influence of atmosphere on surface morphology and composition was studied. Octahedral crystals with considerable spalled regions are present on the surface of alloy oxidized under air, the oxide scale composes of MnCr2O4, Cr2O3 and (Fe, Ni)Cr2O4 and spalled regions exhibit base alloy and SiO2‐rich regions. The surface of alloy oxidized under H2–H2O is fully covered by small granular crystals and blade‐type structures without spallation, and the oxide scale composes of MnCr2O4 and Cr2O3. Moreover, X‐ray photoelectron spectroscopy analysis shows considerable difference in chemical valence states of Mn, Cr and O elements on both alloy surfaces, and hydroxyl compounds exist on the alloy oxidized under H2–H2O atmosphere. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
Exploiting a superhydrophobic surface is very significant due to its excellent water repellency which has many practical applications in various fields. In this work, the cobalt incorporated amorphous carbon‐based (Co/a‐C:H) film was prepared successfully on Si substrate via a simple 1‐step electrochemical deposition where electrochemical deposition technology was using cobalt (II) acetylacetonate methanol solution as electrolyte under high voltage, atmospheric pressure, and low temperature. Surprisingly, the as‐prepared film showed a superior superhydrophobic surface with a water contact angle of 153 ± 1° and a sliding angle of 7.6° without any further modification of low surface energy materials. Especially, the tape adhesive, corrosion resistance, and self‐cleaning tests demonstrated that the as‐prepared carbon‐based film could possess fairly well adhesion, superior anti‐corrosion resistance, and self‐cleaning ability, respectively. It indicated that the superhydrophobic Co/a‐C:H film might have potential promising applications in the field of anti‐fouling, anti‐corrosion, and drag resistance, such as the above‐deck structures on icebreaker vessels, ship hulls, and offshore wind turbine blades.  相似文献   

8.
The development of water‐mediated proton‐conducting materials operating above 100 °C remains challenging because the extended structures of existing materials usually deteriorate at high temperatures. A new triazolyl phosphonate metal–organic framework (MOF) [La3 L 4(H2O)6]Cl ? x H2O ( 1 , L 2?=4‐(4H‐1,2,4‐triazol‐4‐yl)phenyl phosphonate) with highly hydrophilic 1D channels was synthesized hydrothermally. Compound 1 is an example of a phosphonate MOF with large regular pores with 1.9 nm in diameter. It forms a water‐stable, porous structure that can be reversibly hydrated and dehydrated. The proton‐conducting properties of 1 were investigated by impedance spectroscopy. Magic‐angle spinning (MAS) and pulse field gradient (PFG) NMR spectroscopies confirm the dynamic nature of the incorporated water molecules. The diffusivities, determined by PFG NMR and IR microscopy, were found to be close to that of liquid water. This porous framework accomplishes the challenges of water stability and proton conduction even at 110 °C. The conductivity in 1 is proposed to occur by the vehicle mechanism.  相似文献   

9.
Surface wetting is an important and relevant phenomenon in several different fields. Scientists have introduced a large number of applications where special surface wetting could be exploited. Here, we study wetting phenomena on high- and low-adhesive superhydrophobic liquid flame spray (LFS)-generated TiO2 coatings on paper and pigment-coated board substrates using water–ethanol solution as a probe liquid. Submicrometer-scale air gaps, which exist on superhydrophobic surfaces below the liquid droplets, were more stable with the ethanol increment than the larger-scale micrometric air gaps. With the droplet ethanol concentration of 15 wt%, static contact angle as high as 155?±?2° was measured on the LFS–TiO2-coated board. Transition from the low-adhesive wetting state to the high-adhesive state was demonstrated on the LFS–TiO2-coated paper. The LFS method enables efficient roll-to-roll production of surfaces with special wetting properties on economically viable board and paper substrate materials.  相似文献   

10.
Superhydrophobic porous membranes with interconnected open structures for effective treatment oily wastewater have gradually drawn researchers’ attentions owing to frequent occurrence of organics leakage accidents. In this paper, we successfully fabricated superhydrophobic flower-like Cu3(PO4)2·2H2O nanosheets on copper mesh surface via in-situ growth strategy and silane coupling agent (A151) hydrophobic modification. Specifically speaking, commercial copper mesh served as substrate and Cu could react with (NH4)2S2O8 and Na2HPO4, forming flower-like micro-nanostructure. As-synthesized materials were characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and X-ray diffractometer (XRD). In addition, chemical, mechanical stability and durability of as-prepared materials were also investigated under different condition. The relevant experiment results demonstrated that flower-like Cu3(PO4)2·2H2O nanosheets successfully grew on copper mesh surface, resulting in the formation of rough structure. Modified copper mesh showed superhydrophobic and superoleophilic properties simultaneously with water contact angle (CA) of 151.24° and oil contact angle of 0°, respectively. The as-prepared materials could be used to separate oily wastewater with high separation efficiency (above 95.0%). The mechanism of oil–water separation was investigated in detail based on positive and negative capillary effect. High separation efficiency, excellent stability and durability of superhydrophobic copper mesh make it one of best promising separation candidates for wastewater treatment.  相似文献   

11.
Electrodeposited zinc–nickel alloy coatings have been widely adopted for surface treatment of automobile body steel sheet for high corrosion resistance. The corrosion behavior of the coatings has been related with the components of nickel, and the zinc–nickel alloy passive coatings have much higher corrosion resistance than that of zinc–nickel alloy coatings. In the present paper, the corrosion resistance behavior of the zinc–nickel alloy coatings obtained by new process and formulation has been studied by means of the electrochemistry test and neutral salt spray test. And it is discovered that the properties of corrosion resistance of zinc–nickel alloy passive coatings were better than that of zinc passive coatings, Cadmium passive coatings and alloys of electrodeposited cadmium–titanium. The components of corrosion productions, in terms of X‐ray diffraction (XRD), are mainly ZnO, ZnCl2 · 4Zn(OH)2 and small quantity of 2ZnCO3· 3Zn(OH)2. The component of zinc–nickel alloy coatings has been investigated with Glow Discharge Optical Emission Spectrometry (GDA‐750). And it is found that as the thickness of zinc–nickel alloy coatings increases, the component of zinc increases from beginning to end, but the peak value of nickel appears and an enrichment of nickel in the coatings comes into being. Because the electrodeposited zinc–nickel alloy coatings exhibit different alloy phases as a function of their alloy composition, in this paper, the crystal structure changing with the different component of nickel has been studied in terms of XRD. The result shows that electrodeposited zinc–nickel alloy has different phases: α‐phase, a solid solution of zinc in nickel with an equilibrium solubility of about more than 79% nickel; γ‐phase, an intermediate phase with a composition Ni5Zn21; η‐phase, a solid solution of nickel in zinc with less than 5% nickel; and δ‐phase (Ni3Zn22) appeared from η‐phase to α‐phase with increasing content of nickel. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The X‐ray single‐crystal structure determinations of the chemically related compounds 2‐amino‐1,3,4‐thiadiazolium hydrogen oxalate, C2H4N3S+·C2HO4, (I), 2‐amino‐1,3,4‐thiadiazole–succinic acid (1/2), C2H3N3S·2C4H6O4, (II), 2‐amino‐1,3,4‐thiadiazole–glutaric acid (1/1), C2H3N3S·C5H8O4, (III), and 2‐amino‐1,3,4‐thiadiazole–adipic acid (1/1), C2H3N3S·C6H10O4, (IV), are reported and their hydrogen‐bonding patterns are compared. The hydrogen bonds are of the types N—H...O or O—H...N and are of moderate strength. In some cases, weak C—H...O interactions are also present. Compound (II) differs from the others not only in the molar ratio of base and acid (1:2), but also in its hydrogen‐bonding pattern, which is based on chain motifs. In (I), (III) and (IV), the most prominent feature is the presence of an R22(8) graph‐set motif formed by N—H...O and O—H...N hydrogen bonds, which are present in all structures except for (I), where only a pair of N—H...O hydrogen bonds is present, in agreement with the greater acidity of oxalic acid. There are nonbonding S...O interactions present in all four structures. The difference electron‐density maps show a lack of electron density about the S atom along the S...O vector. In all four structures, the carboxylic acid H atoms are present in a rare configuration with a C—C—O—H torsion angle of ∼0°. In the structures of (II)–(IV), the C—C—O—H torsion angle of the second carboxylic acid group has the more common value of ∼|180|°. The dicarboxylic acid molecules are situated on crystallographic inversion centres in (II). The Raman and IR spectra of the title compounds are presented and analysed.  相似文献   

13.
A superhydrophobic surface with maximum static water contact angle of 156° and sliding angle of 3.5° was fabricated by modifying the silica coated multiwalled carbon nanotube composites (SiO2/MWCNTs) using a silane coupling agent vinyltriethoxysilane. The structures of SiO2/MWCNTs and superhydrophobic surface were investigated by infrared spectrometer and transmission electron microscopy. The results indicated that silica had been successfully grafted onto MWCNTs and the SiO2/MWCNTs had been chemical modified by vinyl triethoxy successfully. The morphology of our prepared superhydrophobic surface, investigated by scanning electron microscopy, showed a characteristic rough structure. The effects of pH value and exposure time on the stability of the superhydrophobic surface were also investigated. The superhydrophobic film shows reliable acid and alkali resistance and aging resistance, indicating that it will have a wide range of applications.  相似文献   

14.
The title compound, C7H8FO6PS·H2O, contains both phospho­nic and sulfonic acid functionalities. An extensive network of O—H?O hydrogen bonds is present in the crystal structure. The three acidic protons are associated with the phospho­nate group. Two protons experience typical hydrogen‐bond contacts with the sulfonate‐O atoms, while the third has a longer covalent bond of 1.05 (3) Å to the phospho­nate‐O atom and a short hydrogen‐bond contact of 1.38 (3) Å to the water O atom (all O—H?O angles are in the range 162–175°). The sulfonate group is positioned so that one S—O bond is nearly coplanar with the phenyl ring [torsion angle O—S—C—C ?8.6 (2)°]. The phospho­nate group is oriented approximately perpendicular to the ring [torsion angle P—C—C—C 99.2 (2)°] with one P—O bond anti to the benzyl C—C bond. The mol­ecules pack in layers in the bc plane with the water mol­ecules in between adjacent pairs of inverted layers.  相似文献   

15.
Functional differences between superhydrophobic surfaces, such as lotus leaf and rose petals, are due to the subtle architectural features created by nature. Mimicry of these surfaces with synthetic molecules continues to be fascinating as well as challenging. Herein, we demonstrate how inherently hydrophilic alumina surface can be modified to give two distinct superhydrophobic behaviors. Functionalization of alumina with an organic ligand resulted in a rose‐petal‐like surface (water pinning) with a contact angle of 145° and a high contact angle hysteresis (±69°). Subsequent interaction of the ligand with Zn2+ resulted in a lotus‐leaf‐like surface with water rolling behavior owing to high contact angle (165°) and low‐contact‐angle‐hysteresis (±2°). In both cases, coating of an aromatic bis‐aldehyde with alkoxy chain substituents was necessary to emulate the nanowaxy cuticular feature of natural superhydrophobic materials.  相似文献   

16.
Inorganic nanowire aerogel with low density, high specific surface area and high porosity has received increasing attention in the field of materials physics and chemistry because of not only the unique structural and physical features of metallic oxide but also low cost, environmental friendliness and earth abundant of precursor materials. In this work, MnO2 nanowire aerogels (MNA) with ultralow density, and stable 3D hierarchical structures was successfully fabricated by freeze‐drying processes using MnO2 nanowire as building blocks. The length of MnO2 nanowires exceeds 100 μm, making it easier to cross‐link and self‐assemble into a 3D network of aerogels, and the acid and alkali resistance of MnO2 enables it to adapt to extreme environments. Simultaneously, the monodispersed MnO2 nanowire was prepared by the hydrothermal method, followed by acid treatment. To obtain superhydrophobic properties and achieve selective oil adsorption, the surfaces of nanowire aerogels were grafted the hydrophobic groups with low surface energy via vapor deposition. It is indicated that the obtained 3D hierarchical MNA show both superhydrophobic and super‐lipophilic properties simultaneously with a high‐water contact angle of 156°  ±  2° and an oil contact angle of 0°. And the MNA exhibited a high oil adsorption capacity of 85–140 g/g, thereby indicating its potential applications in oil/water separation. More importantly, the resulting MNA can be recycled ten cycles without loss of oil absorption capacity (more than 120 g/g). The results presented in this work demonstrate that the as‐prepared nanowire aerogel may find applications in chemical separation and environmental remediation for large‐scale absorption of oils from water.  相似文献   

17.
To improve the initial corrosion resistance and then make the degradation rate of magnesium alloys to meet the biomedical application, crack-free CaO–P2O5–SrO–Na2O bioglass-ceramic coatings were synthesized on AZ31 magnesium alloy substrates using a sol–gel dip-coating technique followed by a heat-treatment in the temperature range of 400–500 °C. The effects of heat-treatment on the phase constituents, surface characteristics and corrosion resistances of the coatings were investigated. It was shown that the crystallization of Ca2P2O7 occurred after the glass was treated at 400 °C. As the temperature increased from 400 °C to 450 °C, besides main phase Ca2P2O7, β-Ca(PO3)2 and Ca4P6O19 were identified as minor crystal phases in the glass–ceramic. No new phase was detected with the temperature increasing to 500 °C except for the further crystallization. Meanwhile, the water contact angles of the coatings decreased with the increase of heat-treatment temperature due to the great crystallization. The corrosion resistances of the coated magnesium alloys were studied by electrochemical corrosion techniques in the simulated body fluid. The results revealed that the coating heat-treated at 400 °C exhibited superior corrosion resistance because of less crystallization, suggesting that the calcium phosphate bioglass–ceramic coating can provide effective protection for magnesium alloy substrate to control its initial degradation in vivo and maintain the desired mechanical properties.  相似文献   

18.
Derived from a strategically chosen hexafluorinated dicarboxylate linker aimed at the designed synthesis of a superhydrophobic metal–organic framework (MOF), the fluorine‐rich nanospace of a water‐stable MOF ( UHMOF‐100 ) exhibits excellent water‐repellent features. It registered the highest water contact angle (≈176°) in the MOF domain, marking the first example of an ultrahydrophobic MOF. Various experimental and theoretical studies reinforce its distinctive water‐repellent characteristics, and the conjugation of superoleophilicity and unparalleled hydrophobicity of a MOF material has been coherently exploited to achieve real‐time oil/water separation in recyclable membrane form, with significant absorption capacity performance. This is also the first report of an oil/water separating fluorinated ultrahydrophobic MOF‐based membrane material, with potential promise for tackling marine oil spillages.  相似文献   

19.
To reduce the biocorrosion rate and enhance the biocompatibility by surface modification, MgF2 coatings were prepared on Mg–1Ca alloy using vacuum evaporation deposition method. The average thickness of the coating was about 0.95 µm. The results of immersion test and electrochemical test indicated that the corrosion rate of Mg–1Ca alloy was effectively decreased after coating with MgF2. The MgF2 coating induced calcium phosphate deposition on Mg–1Ca alloy. After 72 h culture, MG63 cells and MC3T3‐E1 cells were well spread on the surface of the MgF2‐coated Mg–1Ca alloy, while few cells were observed on uncoated Mg–1Ca alloy samples. In summary, MgF2 coating showed beneficial effects on the corrosion resistance and thus improved cell response of the Mg–1Ca alloy effectively and should be a good surface modification method for other biomedical magnesium alloys. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A facial chemical etching method was developed for fabricating superhydrophobic aluminum surfaces. The resultant surfaces were characterized by scanning electron microscopy, water contact angle (WCA) measurement, and optical methods. The surfaces of the modified aluminum substrates exhibit superhydrophobicity, with a WCA of 154.8° ± 1.6° and a water sliding angle of about 5°. The etched surfaces have binary structure consisting of the irregular microscale plateaus and caves in which there are the nanoscale block‐like convexes and hollows. The superhydrophobicity of aluminum substrates occurs only in some structures in which the plateaus and caves are appropriately ordered. The resulted surfaces have good self‐cleaning properties. The results demonstrate that it is possible to construct superhydrophobic surface on hydrophilic substrates by tailoring the surface structure to providing more spaces to trap air. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号