首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we demonstrate how condensed moisture droplets wet classical superhydrophobic lotus leaf surfaces and analyze the mechanism that causes the increase of contact angle hysteresis. Superhydrophobic lotus leaves in nature show amazing self-cleaning property with high water contact angle (>150°) and low contact angle hysteresis (usually <10°), causing droplets to roll off at low inclination angles, in accordance with classical Cassie–Baxter wetting state. However, when superhydrophobic lotus leaves are wetted with condensation, the condensed water droplets are sticky and exhibit higher contact angle hysteresis (40–50°). Compared with a fully wetted sessile droplet (classical Wenzel state) on the lotus leaves, the condensed water droplet still has relatively large contact angle (>145°), suggesting that the wetting state deviates from a fully wetted Wenzel state. When the condensed water droplets are subjected to evaporation at room conditions, a thin water film is observed bridging over the micropillar structures of the lotus leaves. This causes the dew to stick to the surface. This result suggests that the condensed moisture does not uniformly wet the superhydrophobic lotus leaf surfaces. Instead, there occurs a mixed wetting state, between classical Cassie–Baxter and Wenzel states that causes a distinct increase of contact angle hysteresis. It is also observed that the mixed Cassie–Baxter/Wenzel state can be restored to the original Cassie–Baxter state by applying ultrasonic vibration which supplies energy to overcome the energy barrier for the wetting transition. In contrast, when the surface is fully wetted (classical Wenzel state), such restoration is not observed with ultrasonic vibration. The results reveal that although the superhydrophobic lotus leaves are susceptible to being wetted by condensing moisture, the configured wetting state is intermediate between the classical Cassie–Baxter and Wenzel states.  相似文献   

2.
Summary: A soft‐lithographic imprinting approach to fabricate super‐hydrophobic surfaces has been developed in this work. In this process, fresh lotus leaves were used as masters and PDMS stamps were prepared by replica molding against the lotus‐leaf surfaces. By using the stamps and an epoxy‐based azo polymer solution as “ink”, the mimicked lotus‐leaf surfaces made of the polymer were fabricated by pressing the featured faces of the stamps against “inked” substrates and drying under a proper condition after peeling off the stamps. The lotus‐leaf‐like surfaces show super‐hydrophobic characteristics with the water contact angle higher than 150° and contact angle hysteresis less than 3°.

SEM images of lotus‐leaf‐like papillary structures on the imprinted surface.  相似文献   


3.
Fabrication of superhydrophobic surface was achieved by electroless deposition of silver film and subsequent immersion into a mixture of stearic acid and cysteamine. The resultant superhydrophobic surface with flower and fall‐leaves like structure showed lotus leaf effect with the water contact angle of about 154° making copper surface water repellant. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, the icephobic properties of superhydrophobic surfaces are investigated under dynamic flow conditions using a closed-loop low-temperature wind tunnel. Superhydrophobic surfaces were prepared by coating aluminum and steel substrate plates with nano-structured hydrophobic particles. The superhydrophobic plates, along with uncoated controls, were exposed to a wind tunnel air flow of 12 m/s and ?7 °C with deviations of ±1 m/s and ±2.5 °C, respectively, containing micrometer-sized (~50 μm in diameter) water droplets. The ice formation and accretion were observed by CCD cameras. Results show that the superhydrophobic coatings significantly delay ice formation and accretion even under the dynamic flow condition of highly energetic impingement of accelerated supercooled water droplets. It is found that there is a time scale for this phenomenon (delay in ice formation) which has a clear correlation with contact angle hysteresis and the length scale of the surface roughness of the superhydrophobic surface samples, being the highest for the plate with the lowest contact angle hysteresis and finest surface roughness. The results suggest that the key for designing icephobic surfaces under the hydrodynamic pressure of impinging droplets is to retain a non-wetting superhydrophobic state with low contact angle hysteresis, rather than to only have a high apparent contact angle (conventionally referred to as a “static” contact angle).  相似文献   

5.
The amazing water repellency of many biological surfaces, exemplified by lotus leaves, has recently received a great deal of interest. These surfaces, called superhydrophobic surfaces, exhibit water contact angles larger than 150 degrees and a low contact angle hysteresis because of both their low surface energy and heterogeneously rough structures. In this paper, we suggest a biomimetic method, "biosilicification", for generating heterogeneously rough structures and fabricating superhydrophobic surfaces. The superhydrophobic surface was prepared by a combination of the formation of heterogeneously rough, nanosphere-like silica structures through biosilicification and the formation of self-assembled monolayers of fluorosilane on the surface. The resulting surface exhibited the water contact angle of 160.1 degrees and the very low water contact angle hysteresis of only 2.3 degrees, which are definite characteristics of superhydrophobic surfaces. The superhydrophobic property of our system probably resulted from the air trapped in the rough surface. The wetting behavior on the surface was in the heterogeneous regime, which was totally supported by Cassie-Baxter equation.  相似文献   

6.
In situ Pd‐catalyzed cyclopentene polymerization in the presence of multi‐walled carbon nanotubes (MWCNTs) is demonstrated to effectively render, on a large scale, polycyclopentene‐crystal‐decorated MWCNTs. Controlling the catalyst loading and/or time in the polymerization offers a convenient tuning of the polymer content and the morphology of the decorated MWCNTs. Appealingly, films made of the decorated carbon nanotubes through simple vacuum filtration show the characteristic lotus‐leaf‐like superhydrophobicity with high water contact angle (>150°), low contact angle hysteresis (<10°), and low water adhesion, while being electrically conductive. This is the first demonstration of the direct fabrication of lotus‐leaf‐like superhydrophobic films with solution‐grown polymer‐crystal‐decorated carbon nanotubes.

  相似文献   


7.
A facial chemical etching method was developed for fabricating superhydrophobic aluminum surfaces. The resultant surfaces were characterized by scanning electron microscopy, water contact angle (WCA) measurement, and optical methods. The surfaces of the modified aluminum substrates exhibit superhydrophobicity, with a WCA of 154.8° ± 1.6° and a water sliding angle of about 5°. The etched surfaces have binary structure consisting of the irregular microscale plateaus and caves in which there are the nanoscale block‐like convexes and hollows. The superhydrophobicity of aluminum substrates occurs only in some structures in which the plateaus and caves are appropriately ordered. The resulted surfaces have good self‐cleaning properties. The results demonstrate that it is possible to construct superhydrophobic surface on hydrophilic substrates by tailoring the surface structure to providing more spaces to trap air. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
《先进技术聚合物》2018,29(1):302-309
A novel superhydrophobic surface based on low‐density polyethylene (LDPE)/ethylene‐propylene‐diene terpolymer (EPDM) thermoplastic vulcanizate (TPV) was successfully fabricated where the etched aluminum foil was used as template. The etched aluminum template, consisted of countless micropores and step‐like textures, was obtained by metallographic sandpaper sanding and the subsequent acid etching. The surface morphology and the hydrophobic properties of the molded TPV surface were researched by using field emission scanning electron microscope and contact angle meter, respectively. From the microstructure observation of the superhydrophobic LDPE/EPDM TPV surface, the step‐like textures obtained via molding with etched aluminum foil template and a large number of fiber‐like structures resulted from the plastic deformation of LDPE matrix could be found obviously. The obtained TPV surface exhibited remarkable superhydrophobicity, with a contact angle of 152.0° ± 0.7° and a sliding angle of 3.1° ± 0.8°.  相似文献   

9.
The present work investigates the enhancement of water repellency on engineering materials surfaces using nanoscale roughness inherent in multi-walled carbon nanotubes (MWCNTs) together with a hydrophobic polystyrene coating via a simple spraying-based technique. The coatings show both a high contact angle and a small sliding angle for water droplets. The different surfaces obtained exhibit contact angles from 125° up to 153° depending on the preparation conditions. The observations of the topology by scanning electron microscopy reveal that the nanostructure created by the MWCNTs and the microstructure induced by the deposition of polystyrene particles forming a two-level structure that conceptually mimics the lotus leaf surface are necessary to create stable superhydrophobic surfaces.  相似文献   

10.
A simple method for preparing cationic poly[(ar‐vinylbenzyl)trimethylammonium chloride)] [poly(VBTAC)] brushes was used by combined technology of “click chemistry” and reversible addition‐fragmentation chain transfer (RAFT) polymerization. Initially, silicon surfaces were modified with RAFT chain transfer agent by using a click reaction involving an azide‐modified silicon wafer and alkyne‐terminated 4‐cyanopentanoic acid dithiobenzoate (CPAD). A series of poly(VBTAC) brushes on silicon surface with different molecular weights, thicknesses, and grafting densities were then synthesized by RAFT‐mediated polymerization from the surface immobilized CPAD. The immobilization of CPAD on the silicon wafer and the subsequent polymer formation were characterized by X‐ray photoelectron spectroscopy, water contact angle measurements, grazing angle‐Fourier transform infrared spectroscopy, atomic force microscopy, and ellipsometry analysis. The addition of free CPAD was required for the formation of well‐defined polymer brushes, which subsequently resulted in the presence of free polymer chains in solution. The free polymer chains were isolated and used to estimate the molecular weights and polydispersity index of chains attached to the surface. In addition, by varying the polymerization time, we were able to obtain poly(VBTAC) brushes with grafting density up to 0.78 chains/nm2 with homogeneous distributions of apparent needle‐like structures. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
The creation of low hysteresis superhydrophobic paper is reported using a combination of oxygen plasma etching and plasma deposition of an 80 nm non-fluorinated, hydrophilic diamond-like carbon (DLC) coating. The DLC has an equilibrium (flat surface) contact angle (θ e ) of 68.2° ± 1.5°, which is well below the 90° contact angle that is typically believed to be a prerequisite for superhydrophobicity. Coating of paper substrates with the DLC film yields an advancing contact angle of 124.3° ± 4.1°, but the surface remains highly adhesive, with a receding contact angle <10°. After 60 min of plasma etching and DLC coating, a low hysteresis, superhydrophobic surface is formed with an advancing contact angle of 162.0° ± 6.3° and hysteresis of 8.7° ± 1.9°. To understand the increase in contact angle and decrease in hysteresis, atomic force microscopy and optical profilometry studies were performed. The data demonstrates that while little additional nanoscale roughness is imparted beyond the first 5 min of etching, the roughness at the microscale continually increases. The hierarchical structure provides the appropriate roughness to create low hysteresis superhydrophobic paper from a hydrophilic coating.  相似文献   

12.
利用含氟疏水基团的梯度分布,结合草莓形纳米SiO2粒子提供的双重粗糙表面,制备了具有类"荷叶效应"的超疏水涂膜,水接触角达(174.2±2)°,滞后角几乎接近0°.通过原子力显微镜、扫描电镜和水接触角的测试对膜表面形貌及疏水性能进行了表征;探讨了其表面微观结构与表面疏水性能的关系.草莓形复合粒子在膜表面的无规则排列赋予涂膜表面不同等级的粗糙度,使水滴与涂膜表面接触时能够形成高的空气捕捉率,这种微观结构与疏水基团的梯度分布相结合,赋予了含氟硅丙烯酸酯乳液涂膜表面超疏水性能.  相似文献   

13.
郑建勇  冯杰  钟明强 《高分子学报》2010,(10):1186-1192
以碳酸钙(CaCO3)颗粒层为模板,运用简单的热压和酸蚀刻相结合的方法制备聚合物超亲水/超疏水表面.首先在玻璃基底上均匀铺撒一层CaCO3颗粒,以此作为模板,通过热压线性低密度聚乙烯(LLDPE)使CaCO3颗粒均匀镶嵌在聚合物表面,获得了超亲水性质;进一步经酸蚀得到了具有微米和亚微米多孔结构的表面,其水滴静态接触角(WCA)可达(152.7±0.8)°,滚动角小于3°,具备超疏水性质.表面浸润性能和耐水压冲击性能研究表明该超疏水表面具有良好的稳定性和持久性.用同样工艺微模塑/酸蚀刻其它疏水性聚合物,得到类似结果.  相似文献   

14.
The bioinspired leaf‐like super‐hydrophobic surfaces on aluminum alloy were fabricated by means of a facile method using anodic oxidation. The surface morphologies, compositions, and wettability were investigated with SEM, XPS, and contact angle measurement, respectively. The SEM showed hierarchical microstructures and nanostructures, the static contact angle was about 167.7 ± 1.2°, and sliding angle was 5°. The super‐hydrophobic phenomenon of the prepared surface was analyzed with Cassie theory, and it is found that only about 3% of the water surface is contacted with the metal substrate and the remaining 97% is contacted with the air cushion. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Superhydrophobic surfaces were obtained easily from the mixtures of aluminum distearate (AlDS) and typical saturated fatty acids with long alkyl chains by a casting method. In contrast to a mediocre water contact angle of 109?±?1° for the surface obtained from only AlDS, the mixture of AlDS and stearic acid (SA) gave a superhydrophobic surface having the contact angle of 164?±?2° and the sliding angle of 3?±?1° at the SA/AlDS weight ratio of 12. A homogeneous surface was not available from only SA on a macroscopic scale. To be superhydrophobic, the surface needs to take a hierarchical structure, like a table coral which consists of several tens of micrometer-size primary structure of widely branched SA crystals. In this study, the hierarchical structures were obtained by crystallizing fatty acids in the organogel composed of AlDS and a solvent, to avoid the formation of needle-like or plate-like bulky crystals as usually seen in the recrystallization of fatty acids.  相似文献   

16.
The various morphology and structure microspheres were fabricated via one‐step single‐solvent electrospraying of hydrophilic and hydrophobic block modified copolymer of polycaprolactone (PCL). A honeycomb‐like hierarchical structure microspheres of PCL‐b‐PTFOA(4h) and abundant nanometer pores of PCL‐b‐PEG400 microspheres were obtained due to the solvent evaporation, thermally and polymer diffusion‐induced phase separation effect. Furthermore, a superhydrophobic coatings and robust superhydrophobic‐coated cotton woven fabric surfaces were prepared by using PCL‐b‐PTFOA(4h) microspheres with hierarchical structure and low surface energy. The contact angle (CA) and sliding angle (SA) of PCL‐b‐PTFOA(4h) microspheres‐coated cotton woven fabric surfaces reached 164.4 ± 5.5° and 6.8 ± 0.5°, respectively, which allows for self‐cleaning. The self‐cleaning test demonstrated that the coated superhydrophobic surface could shed aqueous dyes and dust without any trace. The superhydrophobic‐coated fabric shows good soaping fastness against mechanical abrasion without significant reduction of CA. This electrospraying coating of block copolymers can provide a simple, facile, and promising technique for producing multifunctional textiles.  相似文献   

17.
The superhydrophobic surface on copper is fabricated by using a simple hydrothermal reaction and subsequent perfluorosilane treatment. The micro‐structured and nano‐structured surface was directly obtained through the hydrothermal reaction of copper sheets with sulfur at 180 °C for 12 h, resulting in the formation of copper sulfide film on the copper substrate. The chemical composition of this film was confirmed using X‐ray photoelectron spectroscopy. After copper sulfide film is treated by perfluorosilane, the superhydrophobic surface with static water contact angle of 153 °C and a low contact angle hysteresis is achieved. The superhydrophobic surface shows strong mechanical stability and can effectively protect the copper substrate. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
A facile route to methyltrimethoxysilane (MTMS) based recoverable superhydrophobic silica coatings with dual-scale roughness obtained through the single step base catalyst sol–gel process. Superhydrophobic silica coatings have shown static water contact angle near about 170 ± 1° and dynamic water contact angle up to 2 ± 1°. Superhydrophobic-superhydrophilic switching feature also achieved by alternating heat treatment and bath surface modification with Trimethylchlorosilane (TMCS) at room temperature (26 °C). Furthermore, the superhydrophobic state could be transformed into superhydrophilic state by slow rate heat treatment. These studies present a very simple strategy for the fabrication of recoverable superhydrophobic surfaces.  相似文献   

19.
“Surface-photografting” with UV-irradiation of polypropylene (PP) fiber and film and high-strength polyethylene (HSPE) yarn has been made with acrylic acid (AA) and acrylamide (AM) as monomers and benzophenone (BP), 4-chlorobenzophenone (4-BCP) and hydroxylcyclohexylacetophenone (HHA) as photoinitiators using a new continuous method. The grafting reaction occurs in a thin liquid layer on the fiber or film substrate, which is presoaked in a solution containing initiator and monomer. After irradiation with a highpressure mercury lamp, HPM 15 (2 kW) from Philips, for 5–20 sec at about 50°C the fiber and film surface is completely covered with a 2–8 nm thick layer of grafted polymer, analyzed by electron spectroscopy for chemical analysis. The grafting efficiency is 70–80%, i.e. only 20–30% of the polymer is homopolymer which can be removed by extraction. The grafted layers are so thin that they cannot be analyzed as weight increase (<0.1% of fiber weight). Absolute values for the amount of grafted AA polymer is analyzed by microtitration of the COOH groups at the fiber surface. The results agree well with the relative ESCA values. Grafting of commercial PP yarn with AA increases the adsorption of Crystal Violet dye with a factor of about 6. Grafting the same yarn with AM increases the adhesion to epoxy resin by a factor of 3–4 without affecting the mechanical properties of the fiber more than a few percent. For comparison, strips of blown PP film (5 mm wide) are modified by “surface-photografting” with AM. With increasing grafting, the contact angle for drops of distilled water decreases from 90° to 20°, indicating extensive wetting. The adhesion to epoxy resin increases from about 0.35 to 1.7 N/mm2, i.e. with a factor of about 5 when the film surface is completely covered. Other comparisons are made with grafting of commercial HSPE yarn. Grafting with AA increases the adsorption of Crystal Violet dye by a factor of about 6. Grafting with AM increases the adhesion to epoxy resin from 0.25 to 1.3 N/nm2, i.e. with a factor of 5. The bulk mechanical properties of the HSPE filaments are not affected by the grafting measured as tensile strength 2.7±0.1 GPa, elongation at break 4.8±0.3%, and Young's modulus 55±3 GPa, both before and after “surface-photografting”.  相似文献   

20.
The relationship between the contact angles, surface tension, and surface roughness is reviewed. Numerical formulas related to the superhydrophobic rough surfaces of polymers are predicted with two approaches, the Wenzel and Cassie–Baxter models. With these models as a guide, an artificial superhydrophobic surface is created. Rough nylon surfaces mimicking the lotus leaf are created by the coating of a polyester surface with nylon‐6,6 short fibers via the flocking process. Poly(acrylic acid) chains aregrafted onto nylon‐6,6 surfaces, and this is followed by the grafting of 1H,1H‐perfluorooctylamine onto the poly(acrylic acid) chains. Water contact angles as high as 178° are achieved. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 253–261, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号