首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
用含时量子波包法研究了H2 和D2 在光滑静止表面离解吸附动力学 ,用一个修正LEPS型势能面描述H2 /Ni( 1 0 0 )体系分子与表面相互作用 .计算了不同初始振转态的三维离解几率及其动能依赖 .结果表明 :若分子转动态满足 j+m =奇数 ,低能分子离解是对称性禁阻的 .分子转动取向效应表明分子在平面内转动 (m=j)比在平面外转动 (m=0 )更有利于离解 .我们用量子力学的零点能、势垒穿透和反射效应合理地解释了振动激发增进离解以及H2 比D2 有更高离解几率的结果  相似文献   

2.
用动力学Lie代数方法研究H2在Ni(100)面离解吸附量子动力学   总被引:1,自引:0,他引:1  
用动力学Lie代数方法处理H2 在一个光滑金属表面上离解吸附量子动力学 .用一个修正LEPS势能面描述H2 与Ni( 1 0 0 )表面相互作用 ,得到了H2 初态确定的离解几率的初始动能和时间依赖的解析表示 ,并与实验和其他理论计算做了比较 .这个方法能有效地用于描述表面反应散射动力学 .  相似文献   

3.
对强激波作用下双原子分子振动与离解耦合的非平衡离解过程进行了理论计算.本工作的特点是将计算起点建立在分子基本参数上,采用主方程理论处理振动与离解的耦合,振动跃迁几率用SSH理论计算,在离解限附近考虑多量子数跃迁并计及原子复合的影响.对O2-Ar体系,计算给出了在正激波后O2分子振动能级分布、振动弛豫时间、离解孕育时间、离解产物浓度、离解速率系数等物理量随时间的演化.计算结果分别与Camac 和Wray的实验相符.计算显示,在激波作用的后期,有准稳态的振动能级布居分布.计算结果显示,Park模型低估了非平衡离解速率系数,Hansen模型则高估了非平衡离解速率系数.  相似文献   

4.
利用密度泛函(DFT)三种交换/相关函数(B3LYP,B3PW91,B3P86)结合6—31G^**和 6-311G^**基组,计算了13个取代氯苯化合物的键离解能.结果表明B3PS6/6—311G^**方法是计算取代氯苯化合物键离解能的可信方法,研究发现C—Cl键的键离解能与所使用的基组和计算方法密切相关,取代基对C—Cl键的键离解能的影响不明显.研究了目标化合物的前线轨道能级差,并对取代氯苯化合物的热稳定性做了评估.  相似文献   

5.
弱酸离解平衡的计算机辅助教学王玲(武汉冶金科技大学153信箱430081)关键词计算机弱酸离解离子强度缔合中图分类号O611.3近年来本人在教学中尝试利用电脑对教材中的弱酸离解平衡作定量计算,得到了有益的收获。在弱酸全稀释过程中,氢离子浓度单调变小在...  相似文献   

6.
聚丙烯酸和聚丙烯酸盐是一类重要的水溶性聚合物,也是典型的聚电解质的代表.聚电解质在溶液中可以离解为聚离子和对离子,这一行为是它的根本特性.聚电解质的离解行为与相应的小分子.弱酸和弱酸强碱所生成的盐的离解行为有很大的不同,从而引发了许多实验和理论的研究.早期的工作,大都是用电位滴定的方法研究酸性聚电解质的离解,  相似文献   

7.
苯氧乙酸;酸离解常数;键电荷密度;量子化学计算;苯氧乙酸类化合物的酸离解常数测定及其量子化学计算  相似文献   

8.
王华静  傅尧  王晨  郭庆祥 《化学学报》2008,66(3):362-370
利用六种密度泛函理论方法(B3LYP, B3P86, MPW1K, TPSS1KCIS, X3LYP, BMK)对碳氯键离解能进行理论计算,结果发现几种新发展的密度泛函(DFT)方法用于碳氯键离解能的计算比传统的B3LYP有较大的改善,其中对能量估算相对准确的B3P86方法对碳氯键离解能的计算精度最高,对17个分子中碳氯键离解能计算的平均绝对偏差为6.58 kJ/mol。最后运用B3P86方法对一系列环境危害较大,但可通过光化学降解和生物降解的氯代有机物的碳氯键离解能值进行预测,并讨论了影响碳氯键离解能的结构性质关系。  相似文献   

9.
讨论了甘氨酸离解时基元反应平衡常数和总包反应离解平衡常数的关系,并计算溶液中等电点附近,不带电形式和等电形式甘氨酸的数量之比。说明氨基酸在溶液中主要以等电形式存在。  相似文献   

10.
利用流动混合微量热法测定298.15K时单取代氨基苯甲酸邻,间,对三个异构体在水-乙醇混合溶剂中两个官能团分步离解的离解焓,结合相应的Gibbs自由能数据计算离解熵,从溶剂效应和取代基位置效应探讨其离解热力学行为。  相似文献   

11.
Recentprogressinsurfacespectroscopyandmolecularbeamscatteringanddetectiontechniquesmakesitnowpossibleatthemicroscopicleveltoaccuratelymeasuresuchthingsasdissociationrates,adsorbatebindingandgeometry,andmobilitiesofadsorbedspeciesonsurfaces.Thiskindofe…  相似文献   

12.
A time-dependent quantum wave packet method was used to study the dynamics of dissociative adsorption of H2 and D2 on a flat and static surface. The molecule-surface interaction is described using a modified London-Eyring-Polanyi-Sato (LEPS) type potential for the H2/Ni(100) system. The three-dimensional (3-D) dissociation probabilities were calculated for different initial rovibrational states as a function of initial incident energies. Our results show that the dissociation of the diatomic rotational states whose quantum numbers satisfyj+m = odd is forbidden at low energies for the homonuclear Hz and D2 due to the selection rule. The effect of the rotational orientation of diatoms on adsorption predicts that the in-plane rotation (m = j) is more favorable for dissociation than the out-of-plane rotation (m = 0). Enhanced dissociation for vibrationally excited molecules and the significant enhancement of the dissociation probability of H2 when compared to D2 were explained reasonably in terms of quantum mechanical zero-point energies, the tunneling effect and the reflection from an activation barrier. Project supported by the National Natural Science Foundation of China (Grant No. 19694033) and partially by the Science Foundation for Overseas Chinese Scholars and Students, administered by the State Education Commission of China (Grant No. 1992), by the State Key Laboratory of Theoretical and Computational Chemistry of Jilin University at Changchun (Grant No. 98011, and by the Natural Science Foundation of Shandong Province (Grant No. Y96B03022)  相似文献   

13.
Three-dimensional time-dependent quantum mechanical method has been used to study the influence of orientation, rotation, and vibration on the dissociation of water molecule on Cu(111) surface, using London-Eyring-Polanyi-Sato potential energy surface. Our calculations show that dependency of dissociation probability on the initial orientation of the molecule changes with the vibrational state of the molecule. It has also been found that for v(0) = 0 and 1, where v(0) stands for the vibrational state of the pseudo diatomic HO-H, the rotational excitation of the molecule increases the reactivity, whereas for v(0) = 2, the rotational excitation of the molecule decreases the reactivity. Vibrational excitation of the molecule greatly enhances the dissociation probability.  相似文献   

14.
Juurlink LB  Smith RR  Utz AL 《Faraday discussions》2000,(117):147-60; discussion 161-89
We have measured the sticking probability of methane excited to v = 1 of the v3 antisymmetric C-H stretching vibration on a clean Ni(100) surface as a function of rotational state (J = 0, 1, 2 and 3) and have investigated the effect of Coriolis-mixing on reactivity. The data span a wide range of kinetic energies (9-49 kJ mol-1) and indicate that rotational excitation does not alter reactivity by more than a factor of two, even at low molecular speeds that allow for considerable rotation of the molecule during the interaction with the surface. In addition, rotation-induced Coriolis-splitting of the v3 mode into F+, F0 and F- states does not significantly affect the reactivity for J = 1 at 49 kJ mol-1 translational energy, even though the nuclear motions of these states differ. The lack of a pronounced rotational energy effect in methane dissociation on Ni(100) suggests that our previous results for (v = 1, v3, J = 2) are representative of all rovibrational sublevels of this vibrational mode. These experiments shed light on the relative importance of rotational hindering and dynamical steering mechanisms in the dissociative chemisorption on Ni(100) and guide future attempts to accurately model methane dissociation on nickel surfaces.  相似文献   

15.
In this article we report the results of three-dimensional time-dependent quantum wavepacket calculations carried out for the Br + HD( v = 0, j = 0) reaction in the collision energy range 0.0-1.2 eV. An accurate potential energy surface computed by Kurosaki was used for the dynamical calculations. Both reactive channels, BrH + D and BrD + H, show vibrational enhancement of the reaction cross sections. For the three initial vibrational states considered, the production of BrD channel dominates over that of BrH for the considered collision energy range. The two arrangement channels exhibit different initial rotational state dependence. The cross section for the formation of BrD is almost independent of j whereas the same for the formation of BrH increases with increase in j. A comparison with the results on an e-LEPS surface shows that the two surfaces behave very differently with respect to the cross section for the initial rotational states.  相似文献   

16.
Six-dimensional quantum dynamical and quasiclassical trajectory (QCT) calculations are reported for the reaction and vibrationally inelastic scattering of (v = 0,1,j = 0) H(2) scattering from Cu(110), and for the reaction and rovibrationally elastic and inelastic scattering of (v = 1,j = 1) H(2) scattering from Cu(110). The dynamics results were obtained using a potential energy surface obtained with density functional theory using the PW91 functional. The reaction probabilities computed with quantum dynamics for (v = 0,1,j = 0) were in excellent agreement with the QCT results obtained earlier for these states, thereby validating the QCT approach to sticking of hydrogen on Cu(110). The vibrational de-excitation probability P(v=1,j = 0 --> v = 0) computed with the QCT method is in remarkably good agreement with the quantum dynamical results for normal incidence energies E(n) between 0.2 and 0.6 eV. The QCT result for the vibrational excitation probability P(v = 0,j = 0 --> v = 1) is likewise accurate for E(n) between 0.8 and 1 eV, but the QCT method overestimates vibrational excitation for lower E(n). The QCT method gives probabilities for rovibrationally (in)elastic scattering, P(v = 1,j = 1 --> v('),j(')), which are in remarkably good agreement with quantum dynamical results. The rotationally averaged, initial vibrational state-selective reaction probability obtained with QCT agrees well with the initial vibrational state-selective reaction probability extracted from molecular beam experiments for v = 1, for the range of collision energies for which the v=1 contribution to the measured total sticking probability dominates. The quantum dynamical probabilities for rovibrationally elastic scattering of (v = 1,j = 1) H(2) from Cu(110) are in good agreement with experiment for E(n) between 0.08 and 0.25 eV.  相似文献   

17.
The state-to-state predissociation dynamics of the HCl-acetylene dimer were studied following excitation in the asymmetric C-H (asym-CH) stretch and the HCl stretch. Velocity map imaging (VMI) and resonance enhanced multiphoton ionization (REMPI) were used to determine pair-correlated product energy distributions. Different vibrational predissociation mechanisms were observed for the two excited vibrational levels. Following excitation in the of the asym-CH stretch fundamental, HCl fragments in upsilon = 0 and j = 4-7 were observed and no HCl in upsilon = 1 was detected. The fragments' center-of-mass (c.m.) translational energy distributions were derived from images of HCl (j = 4-7), and were converted to rotational state distributions of the acetylene co-fragment by assuming that acetylene is generated with one quantum of C-C stretch (nu(2)) excitation. The acetylene pair-correlated rotational state distributions agree with the predictions of the statistical phase space theory, restricted to acetylene fragments in 1nu(2). It is concluded that the predissociation mechanism is dominated by the initial coupling of the asym-CH vibration to a combination of C-C stretch and bending modes in the acetylene moiety. Vibrational energy redistribution (IVR) between acetylene bending and the intermolecular dimer modes leads to predissociation that preserves the C-C stretch excitation in the acetylene product while distributing the rest of the available energy statistically. The predissociation mechanism following excitation in the Q band of the dimer's HCl stretch fundamental was quite different. HCl (upsilon = 0) rotational states up to j = 8 were observed. The rovibrational state distributions in the acetylene co-fragment derived from HCl (j = 6-8) images were non-statistical with one or two quanta in acetylene bending vibrational excitation. From the observation that all the HCl(j) translational energy distributions were similar, it is proposed that there exists a constraint on conversion of linear to angular momentum during predissociation. A dimer dissociation energy of D(0) = 700 +/- 10 cm(-1) was derived.  相似文献   

18.
The state-to-state photodissociassion dynamics for the B band of D2O have been explored from quantum dynamical calculations including the electronic ~X and ~B states. The calculations were carried out using a Chebyshev real wave packet method. The calculated absorption spectra, product state distributions, and branching ratios from different initial vibrational states show di?erent dynamic features, due to the different shapes of the vibrational wavefunctions. The initial bending mode (0,1,0) generates two lobes with a shallow minimum on the absorption spectrum and a slight inverted vibrational population of OD(~X )product at high total energies. The rotational state distributions of OD(~X , v=0) product are highly inverted and depend weakly on the initial state and total energy. On the other hand, the ro-vibrational distributions of OD(A~) product strongly oscillate with the total energy, which are dominated by the long-living resonances and depend sensitively on the potential surfaces. The antisymmetric stretching mode (0,0,1) has large OD( ~ A)/OD(~X ) branching ratios at high total energies, which indicates that the B band dissociation proceeds mainly via the adiabatic pathway in some cases.  相似文献   

19.
A global analytical potential energy surface for the ground state of H(3)(-) has been constructed by fitting an analytic function to the ab initio potential energy values computed using coupled cluster singles and doubles with perturbative triples [CCSD(T)] method and Dunning's augmented correlation consistent polarized valence triple zeta basis set. Using this potential energy surface, time-dependent quantum mechanical wave packet calculations were carried out to calculate the reaction probabilities (P(R)) for the exchange reaction H(-)+H(2)(v, j)-->H(2)+H(-), for different initial vibrational (v) and rotational (j) states of H(2), for total angular momentum equal to zero. With increase in v, the number of oscillations in the P(R)(E) plot increases and the oscillations become more pronounced. While P(R) increases with increase in rotational excitation from j=0 to 1, it decreases with further increase in j to 2 over a wide range of energies. In addition, rotational excitation quenches the oscillations in P(R)(E) plots.  相似文献   

20.
Exact quantum results for collision-induced dissociation on a reactive surface are presented. A modified LEPS potential-energy surface modeling the H + HD → H2 + D system has been used. HD and H2 bearing respectively 7 and 6 bound states. This system has been chosen because it displays significant reactive scattering for total energies above the dissociation threshold. Calculations have been performed using the time-dependent wavepacket method for two initial vibrational quantum numbers of the HD molecule (v = 0, 2). For each vibrational quantum number, two wavepackets with overlapping energy distributions have been run, covering a total energy range up to more than three times the dissociation energy. Comparison with previous collision-induced dissociation calculations shows that the dissociation is greatly enhanced by the presence of concomitant reactive scattering. A vibrational enhancement effect is also observed above the dissociation threshold; for higher energies the system exhibits a pronounced vibrational inhibition effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号