首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compared witli the traditional dental implant, TixOs■ manufactured by direct laser metal forming(DLMF) technology exhibits improved capability for bone osteointegration due to its porous surface structure, and has achieved remarkable clinical effect. However, like the traditional titanium and other alloyed implants, the porous titanium implant TixOsR also has relatively weak bioactivity. To address this issue, a proper surface modification method may be needed. Hydroxyapatite(HA) has been widely used in implant surface coating for its similar chemical composition to bone tissue and its osteoconductive properties. Thus, combining TixOs■ implants with hydroxyapatite can be an efficient way to enhance their bioactivity. We herewith reported a competent pulsed laser deposition(PLD) method of coating nano-sized HA thin film onto the porous TixOs■ implant. The HA coatings were characterized by means of scanning electron microscopy(SEM), energy dispersive X-ray spectroscopy(EDS), X-ray photoelectron spectroscopy(XPS) and focused ion beam(FIB) method, and nanocrystal sized thin HA films were identified on the surface of TixOs■ implants. The low cytotoxicity and improved cell proliferation ability of HA coated implants were further tested and verified using MC 3T3 E1 cells with the consideration of the controlling group. Our results show that a stable and bioactive HA tliin film is able to form on the surtace of the porous titanium implant by PLD method.This may benefit the fiirther clinical application of TixOs■ implants.  相似文献   

2.
Electrophoretic deposition (EPD) method has been developed for the deposition of thin films of chiral polymers. EPD of poly-L-lysine (PLL) and poly-L-ornithine (PLO) films was performed for the first time on conductive substrates from aqueous and ethanol-water solutions. The deposition yield was monitored using a quartz crystal microbalance. The results demonstrated that the deposition yield can be varied by variation of the deposition time, voltage and polymer concentration in the solutions. It was shown that PLL and PLO provided stabilization and charging of hydroxyapatite (HA) nanoparticles in suspensions. Composite PLL-HA and PLO-HA films of controlled thickness were prepared by EPD. Electron microscopy investigations showed that the thickness of the PLL, PLO and composite films was varied in the range of 0-3 μm. The polymer and composite films can be used for biomedical applications.  相似文献   

3.
利用磁控溅射方法在Si(001)基片上制备Ti/Pt底电极,其厚度大概分别为20、100 nm,其中Ti电极作为缓冲层,随后在上面溅射PZT铁电薄膜.研究了不同电极的制备工艺对电极形貌、取向以及对PZT铁电薄膜的制备带来的影响.结果表明,底电极的溅射温度以及退火温度对于底电极起着至关重要的作用,同时具有良好(111)取向的、致密性较好的底电极对于PZT铁电薄膜的生长具有重要的影响.  相似文献   

4.
Micron and nano-scale hydroxyapatite (HA) were coated successfully on AA6061-T4 substrates by sol–gel method. Besides, the effects of coating thickness on adhesion strength and corrosion behaviour of the coatings were studied. Corrosion resistance was measured by potentiodynamic polarization test using a potentiostat under in vitro conditions. The coatings before and after corrosion tests were characterized by adhesion tests, a scanning electron microscopy attached with EDS and X-ray diffraction analysis. The results revealed that all the coatings exhibit a passive behaviour in Ringer’s solution. Specimens coated with nano-scale HA had the higher corrosion resistance than micro-scale coatings. The highest corrosion resistance appeared to be for the ~30 μm nano-scale HA coated substrates. However, for micro-scale HA coatings, the highest adhesion resistance was obtained at ~30 μm film thickness.  相似文献   

5.
Y Liu  D Cheng  IH Lin  NL Abbott  H Jiang 《Lab on a chip》2012,12(19):3746-3753
Although biochemical sensing using liquid crystals (LC) has been demonstrated, relatively little attention has been paid towards the fabrication of in situ-formed LC sensing devices. Herein, we demonstrate a highly reproducible method to create uniform LC thin film on treated substrates, as needed, for LC sensing. We use shear forces generated by the laminar flow of aqueous liquid within a microfluidic channel to create LC thin films stabilized within microfabricated structures. The orientational response of the LC thin films to targeted analytes in aqueous phases was transduced and amplified by the optical birefringence of the LC thin films. The biochemical sensing capability of our sensing devices was demonstrated through experiments employing two chemical systems: dodecyl trimethylammonium bromide (DTAB) dissolved in an aqueous solution, and the hydrolysis of phospholipids by the enzyme phospholipase A(2) (PLA(2)).  相似文献   

6.
Nylon-6 substrates were coated with SiO2 thin films by the sol-gel method and their water permeability coefficient was evaluated. Methyltriethoxysilane (MTES) and tetraethoxysilane (TEOS) were used as starting materials. The addition of MTES to TEOS has enabled the formation of crack-free thin films on the substrates. The thin films strongly adhered to the substrates. The water permeability coefficients of nylon-6 substrates coated with these thin films decreased with the increase in the ratio of TEOS to the total alkoxides. The pretreatment of the nylon-6 substrates with -aminopropyltriethoxysilane was found to be effective to suppress the water permeability. The water permeability was suppressed by about 40% under the optimal condition.  相似文献   

7.
A one-pot chemoenzymatic method for the synthesis of a variety of new iminocyclitols from readily available, non-phosphorylated donor substrates has been developed. The method utilizes the recently discovered fructose-6-phosphate aldolase (FSA), which is functionally distinct from known aldolases in its tolerance of different donor substrates as well as acceptor substrates. Kinetic studies were performed with dihydroxyacetone (DHA), the presumed endogenous substrate for FSA, as well as hydroxy acetone (HA) and 1-hydroxy-2-butanone (HB) as donor substrates, in each case using glyceraldehyde-3-phosphate as acceptor substrate. Remarkably, FSA used the three donor substrates with equal efficiency, with kcat/KMvalues of 33, 75, and 20 M-1 s-1, respectively. This level of donor substrate tolerance is unprecedented for an aldolase. Furthermore, DHA, HA, and HB were accepted as donors in FSA-catalyzed aldol reactions with a variety of azido- and Cbz-amino aldehyde acceptors. The broad substrate tolerance of FSA and the ability to circumvent the need for phosphorylated substrates allowed for one-pot synthesis of a number of known and novel iminocyclitols in good yields, and in a very concise fashion. New iminocyclitols were assayed as inhibitors against a panel of glycosidases. Compounds 15 and 16 were specific alpha-mannosidase inhibitors, and 24 and 26 were potent and selective inhibitors of beta-N-acetylglucosaminidases in the submicromolar range. Facile access to these compounds makes them attractive core structures for further inhibitor optimization.  相似文献   

8.
A great concern has been raised regarding the issue of fluoroquinolones(FQs) in the environment. In this work, the transformation of FQs by commonly used oxidant permanganate(Mn(VII)) in the absence and presence of humic acid(HA), ubiquitously existing in aquatic environments, was systematically investigated. Here, the catalytic role of in-situ formed MnO2 on Mn(VII) oxidation of FQs depending on solution pH and co-existing substrates was firstly reported. It was interestingly found t...  相似文献   

9.
CaCu3Ti4O12 (CCTO) thin films were successfully grown on LaAlO3(100) and Pt/TiO2/SiO2/Si(100) substrates by a novel MOCVD approach. Epitaxial CCTO(001) thin films have been obtained on LaAlO3(100) substrates, while polycrystalline CCTO films have been grown on Pt/TiO2/SiO2/Si(100) substrates. Surface morphology and grain size of the different nanostructured deposited films were examined by AFM, and spectroscopic ellipsometry has been used to investigate the electronic part of the dielectric constant (epsilon2). Looking at the epsilon2 curves, it can be seen that by increasing the film structural order, a greater dielectric response has been obtained. The measured dielectric properties accounted for the ratio between grain volumes and grain boundary areas, which is very different in the different structured films.  相似文献   

10.
A microfabrication technique that uses a photolithographically patterned film as a microstencil has been developed. This microstencil has a bilayer structure comprised of parylene and SU-8 films with thicknesses from 4 to 100 microm. The parylene layer enables the microstencil to be mechanically peeled from hydrophilic substrates. Since no chemicals are required to release the microstencil, this technique can be used to pattern chemically and biologically sensitive materials. The amount of material deposited can be automatically controlled by the height of the SU-8 structures or externally controlled by spin coating or other thin film deposition techniques. This patterning method is very versatile and has been used to pattern features as small as 25 by 25 microm on silicon, glass, and polymer substrates. As an initial demonstration, we have patterned wax, cells, proteins, sol, and CYTOP.  相似文献   

11.
MgO thin films have been prepared on Si substrates by a novel and simple sol-gel method using magnesium nitrate and collodion as starting material. Solutions consisting of magnesium nitrate in a mixture of collodion and ethanol were spin-coated onto silicon substrates. It was found that collodion was a necessary component to form stable sols and the crystallization and structures were clearly dependent on the amount of the collodion and the annealing temperature. The MgO thin films with good crystallization were obtained after annealing at 800°C. Meanwhile, the microstructure of the MgO films was examined by transmission electron microscopy and atomic force microscopy.  相似文献   

12.
《Solid State Sciences》2012,14(8):1133-1140
The solid state reaction between U(Mo) and Si, leading to the formation of silicides, has been studied using in-situ X-ray Diffraction. Samples were prepared by sputter depositing Si in thin layers on U(Mo) substrates (8 wt% Mo) and vice versa. In a similar way the reaction between U(Mo) and Al has been studied using U(Mo) substrates covered with a thin layer of Al. The samples were heated to temperatures up to 950 °C in a static purified helium atmosphere. Even though the measurements were hampered by the undesired oxidation of uranium, the formation of various silicides and aluminides could be observed. Kissinger analysis on ramp anneals with ramp rates of 0.2, 0.5, 1 and 3 °C/s have been performed to investigate the kinetics of the formed silicides. Using this method, the apparent activation energy for the different silicide formation reactions was deduced. Using the effective heat of formation rule, a prediction was made on the first phase formed and the subsequent phase sequence. A good agreement was found between the measurements and prediction.  相似文献   

13.
We present a soft-lithography based method to fabricate plastic thin film fluidic devices on glass and plastic substrates. Principles of soft-lithography and spin casting were used to generate the films. The thickness of these films is controllable and the patterns we have generated have submicron scale dimensions. By using commercially available compact disc (CD) components as molds, we have been able to generate parallel line and cross patterns on these thin films. These patterned films could be lifted from the substrates and further folded into rolls.  相似文献   

14.
In this communication, we investigated the effects of LiNiVO4 thin film electrodes composition, thickness, electrolytes, cycling temperature, crystallization of films, and substrates on the kinetics during lithium insertion/de-insertion behaviour, which were studied in detail by cyclic voltammetry. The stoichiometric and non-stoichiometric thin films were formed by using rf-sputtering by varying the partial pressure of oxygen, and the host films were characterized by a variety of methods like Nuclear techniques and surface science analytical methods. The galvanostatic studies give the lithium insertion amounts and the best electrochemical performance of 1300 mAh/g capacity has been obtained from the stoichiometric film deposited on a stainless steel substrate during the first discharge cycle. The lithium diffusion coefficients of the film during the first discharge–charge cycle were measured by using galvanostatic intermediate titration method. Overall, the voltammetric behaviours of LiNiVO4 thin film electrodes are highly sensitive to the composition, thickness, cycling temperature, scan rate, substrates and crystal structure, and the above observed behaviours are discussed.  相似文献   

15.
TiO2 thin films have been effectively fused onto F:SnO2 (FTO) substrates via the electrodeposition method. The influence of deposition temperature on the synthesis of F:SnO2 substrates and relative information of as-deposited and annealed TiO2 thin films have been studied. Novel TiO2 microspheres are detected on F:SnO2 substrates at an optimized electrodeposition potential. Raman bands approve the creation of single-anatase-phase TiO2. The optimized deposition surroundings show a decrease in the band gap of F:SnO2 substrates and TiO2 thin films. The determined photoelectrochemical properties of annealed TiO2 thin films indicate a fill factor of 51% and power conversion efficiency of 0.15% for application in solar cells.  相似文献   

16.
PET表面锐钛矿-板钛矿相TiO2薄膜的制备及表征   总被引:1,自引:0,他引:1  
利用改进的溶胶-凝胶法在经表面改性的PET(聚对苯二甲酸乙二醇酯)表面制备得到TiO2薄膜. 利用X射线衍射(XRD)、原子力显微镜(AFM)、UV-Vis 透光率曲线、接触角测试仪等测试手段对TiO2样品的性能进行表征.结果表明, PET表面过渡层的引入有效地改善了有机基底与无机薄膜之间的界面相容性, 在其表面形成透明、均一、附着力良好且具有光催化活性的TiO2薄膜.通过控制实验过程, 在低温下成功制备了不同锐钛矿/板钛矿比的TiO2薄膜,同时发现适量板钛矿相的存在能有效提高薄膜的光致亲水性.  相似文献   

17.
羟基磷灰石与牛血清白蛋白相互作用的原位红外光谱研究   总被引:2,自引:0,他引:2  
应用原位(in situ)全反射红外光谱研究牛血清白蛋白在电化学法制备的羟基磷灰石表面的吸附和成键行为, 探索电化学法制备的HA生物材料/生物环境界面过程和生物相容性的微观本质.  相似文献   

18.
Langevin Molecular Dynamics Simulations have been performed in order to understand thin film formation by impact of energetic clusters. The impact of Mo1024 clusters on a Mo surface is simulated at kinetic energies between 1 and 10 eV per atom. The results are in qualitative agreement with the experiments. Due to the high temperature induced locally at the impact zone, the method can be used to form compact, smooth, and strongly adhering thin films on room temperature substrates.  相似文献   

19.
This paper reports a detailed study of how repeated r.f. magnetron sputtering from a hydroxyapatite (HA) powder target affects the nature and reproducibility of a sequential series of thin‐film coatings deposited onto Ti6Al4V substrates. An evaluation of the effective lifespan of the HA sputter targets and the reproducibility of the calcium phosphate (CaP) coatings produced from them has been made from Fourier transform infrared spectroscopy, XPS and, as appropriate, atomic force microscopy and SEM/energy dispersive x‐ray analyses. The annulus region of the target surface, from which sputtering under r.f. magnetron conditions normally occurs, showed severe surface degradation after only one deposition run, as indicated by significant PO43? and OH? depletion. This deterioration continued after each subsequent deposition cycle but to a much lesser extent than that observed in the initial sputtering period. The layers produced from all of the sputter runs contained the expected Ca2+ and PO43? species characteristic of a CaP system but were OH? deficient in the as‐deposited state. However, the chemical and morphological properties of the coatings did not change significantly until after the third consecutive sputter cycle. Hence, these data indicate that, even though a significant level of degradation of the HA target occurs at the outset of the sputtering procedure, the general plasma conditions employed here have a dominant influence on the coating properties until a critical degradation condition is met. As such, the compacted HA powder targets of interest can have a life‐cycle greater than single usage without detriment to the chemistry and morphology of the coatings produced from them. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
A controlled, rapid, and potentiostat‐free method has been developed for grafting the diazonium salt (3,5‐bis(4‐diazophenoxy)benzoic acid tetrafluoroborate (DCOOH)) on gold and carbon substrates, based on a Zn‐mediated chemical dediazonation. The highly stable thin layer organic platforms obtained were characterized by cyclic voltammetry, AFM, impedance, XP, and Raman spectroscopies. A dediazonation mechanism based on radical formation is proposed. Finally, DCOOH was proved as a linker to an aminated electroactive probe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号