首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interest of using ionic liquids (ILs) as stationary phases in gas chromatography (GC) has increased in recent years. This is largely due to the fact that new classes of ILs are being developed that are capable of satisfying many of the requirements of GC stationary phases. This review highlights the major requirements of GC stationary phases and describes how molten salts/ILs can be designed to largely meet these needs. The retention characteristics of organic solutes will be discussed for ammonium, pyridinium, and phosphonium-based molten salts followed by imidazolium, pyridinium, pyrollidinium, and phosphonium-based IL stationary phases. The versatility of ILs allows for the development of stationary phases based on dicationic ILs, polymeric ILs, and IL mixtures. To aid in choosing the appropriate IL stationary phase for a particular separation, the reader is guided through the different types of stationary phases available to identify those capable of providing the desired separation selectivity of organic solutes while allowing for flexibility in ranges of temperature used throughout the separation.  相似文献   

2.
Dicationic ionic liquids (ILs) are widely used as gas chromatography (GC) stationary phases as they show higher thermal stabilities, variety of polarities, and unique selectivities towards certain compounds. An important aspect contributing to them is that they show multiple solvation interactions compared to the traditional GC stationary phases. Dicationic ILs are considered as combination of three structural moieties: (1) cationic head groups; (2) a linkage chain; and (3) the counter anions. Modifications in these structural moieties can alter the chromatographic properties of IL stationary phases. In this study, a series of nine thermally stable IL stationary phases were synthesized by the combination of five different cations, two different linkage chains, and two different anions. Different test mixtures composed of a variety of compounds having different functional groups and polarities were analyzed on these columns. A comparison of the separation patterns of these different compounds on nine different IL columns provided some insights about the effects of structural modifications on the selectivities and polarities of dicationic ILs.  相似文献   

3.
Two ionic liquids (ILs), namely (S,S)-1-butyl-3-(2'-hydroxy-cyclohexyl)-3H-imidazol-1-ium tetrafluoroborate and (S,S)-1-butyl-3-(2'-acetyl-cyclohexyl)-3H-imidazol-1-ium tetrafluoroborate have been employed as stationary phases in capillary gas chromatography. These new phases exhibit a column efficiency of 1,600 and 2,100 plates m(-1) for IL 1 and IL 2, respectively, a wide operating temperature range and good thermal stability (bleeding temperature of 250 °C for IL 1 and 160 °C for IL 2). Inverse gas chromatography (GC) analyses were used to study the solvation properties of these ILs through a linear solvation energy model. The application of these ILs as new GC stationary phases was studied. These stationary phases exhibited unique selectivity for many organic substances, such as alkanes, ketones, esters, and aromatic compounds. The efficient separation of several mixtures containing compounds of different polarities and the good separation of fatty acid methyl esters (FAMEs) and cis/trans isomers indicate that these ILs may be applicable as a new type of GC stationary phases.  相似文献   

4.
It is known that room-temperature ionic liquids (RTILs) have wide applicability in many scientific and technological fields. In this work, a series of three new dicationic room-temperature ionic liquids functionalized with poly(ethylene glycol) (PEG) linkages were synthesized and characterized via a linear solvation model. The application of these ILs as new GC stationary phases was studied. The efficient separation of several mixtures containing compounds of different polarities and 24 components of a flavor and fragrance mixture indicated comparable or higher resolving power for the new IL stationary phases compared to the commercial polysiloxane and poly(ethylene glycol)-based stationary phases. In addition, the selectivities of the IL stationary phases could be quite unique. The separation of a homologous alkane and alcohol mixture displayed the “dual nature” of these ionic liquids as GC stationary phases. The thermal stability study showed the column robustness up to 350 °C. The high separation power, unique selectivity, high efficiency and high thermal stability of the new dicationic ionic liquids indicate that they may be applicable as a new type of robust GC stationary phase.  相似文献   

5.
Ionic liquids (ILs) are promising gas chromatography (GC) stationary phases due to their high thermal stability, negligible vapor pressure, and ability to solvate a broad range of analytes. The tunability of ILs allows for structure modification in pursuit of enhanced separation selectivity and control of analyte elution order. In this study, the solvation parameter model is used to characterize the solvation interactions of fifteen ILs containing various cationic functional groups (i.e., dimethylamino, hydroxyl, and ether) and cation types paired with various counter anions, namely, tris(pentafluoroethyl)trifluorophosphate (FAP(-)), bis[(trifluoromethyl)sulfonyl]imide (NTf(2)(-)), thiocyanate (SCN(-)), tricyanomethide (C(CN)(3)(-)), tetracyanoborate (B(CN)(4)(-)), and bis[oxalate(2-)]borate (BOB(-)). The presence of functional groups affected the hydrogen bond basicity, hydrogen bond acidity, as well as dispersion interactions of the resulting ILs, while the change of cation type yielded modest influence on the dipolarity. The switch of counter anions in unfunctionalized ILs produced compounds with higher dipolarity and hydrogen bond basicity. The dipolarity and hydrogen bond basicity of ILs possessing cyano-containing anions appeared to be inversely proportional to the cyano content of the anion. The modification of IL structure resulted in a significant effect on the retention behavior as well as separation selectivity for many solutes, including reversed elution orders of some analytes. This study provides one of the most comprehensive examinations up-to-date on the relation between IL structure and the resulting solvation characteristics and gives tremendous insight into choosing suitable ILs as GC stationary phases for solute specific separations.  相似文献   

6.
Polycationic ionic liquids (ILs) are an attractive class of ILs with great potential applicability as gas chromatography stationary phases. A family of hexacationic imidazolium ILs derived from the cycloalkanol family was chemically first prepared in a straightforward manner and then applied for analytical separation purposes. Four tuneable engineering vectors, namely cation ring size structure, anion nature, spatial disposition of cycloalkanol substituents and O‐substitution, were considered as experimental parameters for the design of the desired ionic liquids. A total number of five new phases based on a common benzene core respectively exhibited column efficiencies around to 2500 plates/m, broad operating temperature ranges and also, even more importantly, good thermal stabilities (bleeding temperature between 260 and 365°C), finding variations in the selectivity and analytes elution orders depending on the IL structures. Their solvation characteristics were evaluated using the Abraham solvation parameter model, establishing clear correlations between their cation structure and retention capability with respect to certain analytes. The study of relationships between the ILs structure and solvation parameters gives us an idea of the IL stationary phase to be used for specific separations.  相似文献   

7.
Room-temperature ionic liquids (RTILs) are useful in many chemical applications. Recent publications have attempted to determine the polarity of RTILs using empirical solvent polarity scales. The results have indicated that most RTILs have similar polarities. Nevertheless, RTILs are capable of behaving quite differently when used as solvents in organic synthesis, matrixes in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry, liquid-liquid extraction, and as stationary phases in gas chromatography. The work presented in this study uses a linear free energy approach to characterize 17 RTILs on the basis of their distinct multiple solvation interactions with probe solute molecules. This model provides data that can be used to help identify the interactions and properties that are important for specific chemical applications.  相似文献   

8.
Ionic liquids (ILs), as separation media, have made significant contributions in the past decades in advancing research in gas chromatography (GC), liquid chromatography (LC), and capillary electrophoresis (CE). This review, covering reports published from the mid 1980s to early 2007, shows how ILs have been used so far in separation science, originally primarily as GC stationary phases and later as mobile phase additives (both millimolar and major percent levels) for LC and CE. Representative GC and LC chromatograms as well as CE electropherograms are shown. In addition, the very recent findings on the development of ionic liquids with surfactant properties and its applications for chiral and achiral analysis are discussed.  相似文献   

9.
A chemometric study was carried out to characterize three ionic liquid types (ILs) with hexacationic imidazolium, polymeric imidazolium, and phosphonium cationic cores, using a range of contra-anions such as halogens, thiocyanate, boron anions, triflate, and bistriflimide. The solvation parameter model developed by Abraham et al., unsupervised techniques as cluster analysis (CA), and supervised techniques as linear discriminant analysis (LDA), step-LDA, quadratic discriminant analysis (QDA), and multivariate regression techniques as discriminant partial least squares (D-PLS), or multiple linear regression (MLR) were used to characterize the functionalized ILs above. CA established two main groups of phases, those with an acidic H-bond and those with basic ones. Once detected, the two natural groups, a linear and quadratic delimiters with good classification (>96 %) and prediction (>92 %) capacities were computed. The use of step-LDA technique allowed us to establish that a, b, and s solvation parameters were the most discriminant variables. These variables were used for modeling purposes, and a D-PLS and MLR models were constructed using a binary response. The explained variance of categorical variable by the model validated by cross-validation was 65 %, and 94.5 % of ILs were correctly predicted. IL characterization carried out would allow the appropriate selection of phases for gas chromatography (GC).  相似文献   

10.
Ionic liquids (ILs) grafted polymethylsiloxane (PMS) stationary phases (IL-PMS) for capillary gas chromatography (CGC) are described. The stationary phases were synthesized by grafting 1-vinyl-3-hexylimidazolium (VHIm) with either NTf 2 ? or PF6 ? anion to poly(methylhydrosiloxane) (PMS-VHIm-NTf2, PMS-VHIm-PF6) and coated statically onto fused-silica capillary columns. Separation characteristics of the stationary phases involving Abraham solvation parameters, separation ability and thermal stability were investigated. The obtained solvation parameters reveal that both IL-PMS stationary phases exhibited unique intermolecular interactions compared with either ILs or PMS due to the synergistic effect of ILs and PMS chemically combining together. The separation performance of the IL-PMS stationary phases was investigated by a Grob mixture and a complex mixture of 26 compounds of different types. The results show that the present stationary phases exhibit excellent resolution and selectivity for the analytes of interest with narrow and symmetric peak shapes. Thermal stability was also investigated by column bleed profiles with satisfactory results. The satisfactory chromatographic performance and thermal stability of the IL-PMS stationary phases suggest their great potential as a new type of CGC stationary phases.  相似文献   

11.
12.
以双三氟甲烷磺酰亚胺离子([NTf2]-)为阴离子,合成阳离子烷基取代不同(C1、C2和C4)的硅烷基咪唑离子液体,以其为固定相制备气相色谱填充柱。 硅烷基咪唑离子液体为强极性固定相;阳离子结构影响固定相的热稳定性、极性和分离性能。 在这些离子液体固定相中,1-丁基-3-[(3-三甲氧基硅基)-丙基]咪唑双三氟甲烷磺酰亚胺([PBIM]NTf2)对Grob试剂分离性能较好。 利用溶剂化作用参数模型,评价[PBIM]NTf2固定相特性,研究固定相-组分分子之间相互作用机制;同时考察[PBIM]NTf2色谱柱对不同类型化合物的分离性能。 结果表明,[PBIM]NTf2固定相主要作用力是氢键碱性和偶极作用,对烷烃、醇、酯和胺等不同类型的样品组分表现出良好的分离能力。  相似文献   

13.
Liquid ion association in ionic liquids (ILs) has been examined using a comprehensive series of electronic structure calculations that measure the relative extents of ion association and probe stabilisation for the photochromic dye nitrobenzospiropyran (BSP) in a range of ILs featuring both long-tailed phosphonium cations and short-tailed imidazolium cations, paired with both chloride and NTf(2) anions. New physicochemical experiments measured the photochromic properties of BSP in the phosphonium-based room temperature ILs. Taken together, the computed complexation energies and measured spectroscopic properties support recent Walden plots of unusual conductivity-viscosity behaviour obtained for the same ILs and reveal some new features in the atom-scale structure and energetics of local, ion-ion and ion-molecule interactions. Calculations show inter-ion interactions strengthened by between 0.4 and 0.7 eV as stronger constituent ions are used, which contributes to the longer range rigidity of the Cl-based IL structure as reflected in the doubled |zwitterion → closed| probe relaxation time measured for Cl(-)vs. NTf(2)(-) in phosphonium-based ILs. Calculations further reveal a similar, approximately 0.6-0.7 eV maximum "residual" IL headgroup-mediated probe stabilisation potentially available for the anion-probe-cation complexes via the stabilising interaction that remains following the "quenching" interaction between the IL anion and cation. This potential stabilisation, however, is offset by both longer-range charge networks, beyond the scope of the current purely quantum mechanical simulations, and also energetic penalties for disruption of the highly-interdigitated alkyl tail networks in the phosphonium-based ILs which may be estimated from known diffusion data. Overall the electronic calculations of local, individual ion-ion and ion-molecule interactions serve to clarify some of the measured physicochemical properties and provide new data for the development of classical force field-based approaches to measure also the longer range effects that, together with the electronic effects, provide the condensed phase IL structure and properties. More generally, the combined simulation and experimental results serve as a further example of how both the polar hydrophilic headgroup and non-polar hydrophobic tail of the constituent ions serve as distinct targets for IL rational design.  相似文献   

14.
Sun X  Zhu Y  Wang P  Li J  Wu C  Xing J 《Journal of chromatography. A》2011,1218(6):833-841
Due to the special performance of “dual nature” and synthetic flexibility, ionic liquids (ILs) have been an attractive research subject of stationary phases for gas chromatography (GC). In this work, a novel ionic liquid (IL) bonded polysiloxane ([PSOMIM][NTf2]) with anion of bis-trifluoromethanesulfonylimide (NTf2) was synthesized, and another one with chloride anion ([PSOMIM][Cl]) was also prepared for the purpose of comparison. The thermo-stability of the product was evaluated by thermogravimetric (TG) test and the result indicated that [PSOMIM][NTf2] did not decompose slightly until 380 °C. Then the solvation behaviors of the ILs were characterized using solvation parameter model. Subsequently, [PSOMIM][NTf2] and [PSOMIM][Cl] were used as stationary phases to prepare capillary columns for GC, respectively. The column efficiency of [PSOMIM][NTf2] column was 4776 plates/m (k = 3.64 ± 0.08, naphthalene), and that of the other one was 3170 plates/m (k = 2.84 ± 0.11, naphthalene). The selectivity of the novel stationary phases for analytes, including Grob reagent, aromatic positional isomers was further evaluated. Furthermore, the chromatograms of n-alkanes and polycyclic aromatic hydrocarbons (PAHs) on [PSOMIM][NTf2] column were compared with that on [PSOMIM][Cl] column. [PSOMIM][NTf2] stationary phase also exerted good selectivity for fatty acid methyl esters (FAMEs), polychlorinated biphenyls (PCBs) and aromatic amines.  相似文献   

15.
Ionic liquids (ILs) containing the tris(pentafluoroethyl)trifluorophosphate anion [FAP] have attracted increased attention due to their unique properties including ultrahigh hydrophobicity, hydrolytic stability, and wide electrochemical window. In this study, the solvation parameter model is used via gas chromatography to characterize the solvation interactions of seven ILs containing amino, ester, and hydroxyl functional groups appended to the cation and paired with [FAP], as well as three ILs containing the bis[(trifluoromethyl)sulfonyl]imide anion [NTf2]. The role of the functional groups, nature of the counter anion, and cation type on the system constants were evaluated. ILs containing [FAP] possessed lower hydrogen bond basicity than NTf2-based ILs having the same cationic component; in the case of hydroxyl-functionalized cations, the presence of [FAP] led to an enhancement of the hydrogen bond acidity, relative to the NTf2-analogs. The system constants support the argument that [FAP] weakly coordinates the cation and any appended functional groups, promoting properties of the cation which might be masked by stronger interactions with other anion systems. The chromatographic performance of the IL stationary phases was evaluated by examining the retention behavior and separation selectivity for chosen analytes. The results from this work can be used as a guide for choosing FAP-based ILs capable of exhibiting desired solvation properties while retaining important physical properties including high thermal stability and high hydrophobicity. Figure In this study, the solvation parameter model is used via gas chromatography to characterize the solvation interactions of seven ILs containing amino, ester, and hydroxyl functional groups appended to the cation and paired with tris(pentafluoroethyl)trifluorophosphate [FAP], as well as three ILs containing the bis[(trifluoromethyl)sulfonyl]imide anion [NTf2]. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
The purpose of the present work was to systematically study the chromatographic behaviour of different aromatic stationary phases in a subcritical fluid mobile phase. We attempted to assess the chemical origin of the differences in retention characteristics between the different columns. Various types of aromatic stationary phases, all commercially available, were investigated. The effect of the nature of the aromatic bonding on interactions between solute and stationary phases and between solute and carbon dioxide-methanol mobile phase was studied by the use of a linear solvation energy relationship (LSER): the solvation parameter model. This study was performed to provide a greater knowledge of the properties of these phases in subcritical fluid chromatography, and to allow a more rapid and efficient choice of aromatic stationary phase in regard of the chemical nature of the solutes to be separated. Charge transfer interactions naturally contribute to the retention on all these stationary phases but are completed by various other types of interactions, depending on the nature of the aromatic group. The solvation vectors were used to compare the different phase properties. In particular, the similarities in the chromatographic behaviour of porous graphitic carbon (PGC), polystyrene-divinylbenzene (PS-DVB) and aromatic-bonded silica stationary phases are evidenced.  相似文献   

17.
18.
Fluorohydrogenate salts of quaternary phosphonium cations with alkyl and methoxy groups (tetraethylphosphonium (P(2222)(+)), triethyl-n-pentylphosphonium (P(2225)(+)), triethyl-n-octylphosphonium (P(2228)(+)), and triethylmethoxymethylphosphonium (P(222(101))(+))) have been synthesized by the metatheses of anhydrous hydrogen fluoride and the corresponding phosphonium bromide or chloride precursors. The three salts with asymmetric cations, P(222m)(FH)(2.1)F (m = 5, 8, and 101), are room temperature ionic liquids (ILs) and are characterized by differential scanning calorimetry, density, viscosity, and conductivity measurements. Linear sweep voltammetry using a glassy carbon working electrode shows these phosphonium fluorohydrogenate ILs have wide electrochemical windows (>4.9 V) with the lowest viscosity and highest conductivity in the known phosphonium-based ILs. Thermogravimetry shows their thermal stabilities are also improved compared to previously reported alkylammonium cation-based fluorohydrogenate salts. Differential scanning calorimetry and X-ray diffraction revealed that tetraethylphosphonium fluorohydrogenate salt, P(2222)(FH)(2)F, exhibits two plastic crystal phases. The high temperature phase has a hexagonal lattice, which is the first example of a plastic crystal phase with an inverse nickel arsenide-type structure, and the low-temperature phase has an orthorhombic lattice. The high-temperature plastic crystal phase exhibits a conductivity of 5 mS cm(-1) at 50 °C, which is the highest value for the neat plastic crystals.  相似文献   

19.
The seeming “dual nature” of ionic liquids (ILs) for separating both apolar and polar compounds suggests that ILs may have a great potential for complex samples like essential oils from herbal plants that contain a great variety of compounds. In the present work, a geminal dicationic IL, 1,9-di(3-vinylimidazolium)nonane bis[(trifluoromethyl)sulfonyl]imidate, was investigated for this purpose. To find the best way to achieve satisfactory separations simultaneously for the compounds in essential oils, the dicationic IL was used as the stationary phase for capillary gas chromatography (GC) in two ways, either in its pure state or as a mixed stationary phase with monocationic ILs and a polysiloxane diluent. Interestingly, it was found that the mixed stationary phase exhibited a much better selectivity for polar and nonpolar compounds than either the dicationic IL or the polysiloxane, suggesting that a kind of synergistic effect occurred when these stationary phases were combined in the way described. A comparison with two commercial stationary phases (polar and nonpolar) indicated that this novel mixed stationary phase behaved in a way closer to a polar stationary phase in terms of selectivity and elution order. The present work demonstrates that the mixed stationary phase is efficient and selective and can be an alternative choice for the GC analysis of samples of complex composition. Figure Divinyldiimidazolium-based ionic liquid stationary phase  相似文献   

20.
气相色谱近年的发展   总被引:1,自引:0,他引:1  
傅若农 《色谱》2009,27(5):584-591
简要阐述了近几年气相色谱(GC)的发展和特点。GC是一个成熟的技术,广泛地应用于各个领域,近几年GC的发展除了继续研究新的固定相和高性能的毛细管色谱柱之外,主要在全二维气相色谱(GC×GC)、快速GC、便携式GC仪和微型GC仪几个方面。近几年新研究的GC固定相主要集中在常温离子液体和各种环糊精的衍生物。现在GC研究者趋向于使用商品化的GC毛细管柱,而商品化的GC毛细管柱应用最多的是以含5%苯基的聚甲基硅氧烷为固定相的色谱柱。GC×GC发展迅猛,特别是关于调制器的研究,已开发出十多种调制模式,并广泛地应用于各个领域。为了适应大量样品的分析和现场分析,研究和开发了多种快速GC方法和仪器以及便携式GC仪。为了仪器的小型化和专属性检测,μGC仪的研究也稳步地发展起来。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号