首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
杨宜谦  马和中 《力学季刊》1996,17(2):111-118
本文建立了计及横向剪切变形的旋转惯性的复合材料轴对称层合圆柱正交异性球壳的运动方程。在此基础上,用有限差分法计算了球壳在轴对称动力载荷下的动态响应,并讨论了材料参数、结构参数和横向剪切变形的影响。  相似文献   

2.
爆炸冲击下复合材料层合扁球壳的动力屈曲   总被引:1,自引:0,他引:1  
研究计及横向剪切的复合材料层合扁球壳在爆炸冲击载荷作用下的非线性轴对称动力屈曲问题。通过在复合材料层合扁球壳非线性稳定性的基本方程中增加横向转动惯量项并引入R.H.Cole理论的爆炸冲击力,得到爆炸冲击下复合材料层合扁球壳的动力控制方程,应用Galerkin方法得到用顶点挠度表达的爆炸冲击动力响应方程,并采用Runge-Kutta方法进行数值求解,采用Budiansky-Roth准则确定冲击屈曲的临界载荷,讨论了壳体几何尺寸对复合材料层合扁球壳冲击屈曲的影响;数值算例表明,此方法是可行的。  相似文献   

3.
In this paper, the nonlinear equations of motion for shallow spherical shells with axisymmetric deformation including transverse shear are derived. The nonlinear static and dynamic response and dynamic buckling of shallow spherical shells with circular hole on elastically restrained edge are investigated. By using the orthogonal point collocation method for space and Newmark-β scheme for time, the displacement functions are separated and the nonlinear differential equations are replaced by linear algebraic equations to seek solutions. The numerical results are presented for different cases and compared with available data.  相似文献   

4.
Summary The static and dynamic responses of anisotropic spherical shells under a uniformly distributed transverse load are investigated. Analytical solutions using the mixed variational formulation are presented for spherical shells subjected to various boundary conditions. Numerical results of a refined mixed first-order shear deformation theory for natural frequencies, critical buckling, center deflections and stresses are compared with those obtained using the classical shell theory. A variety of simply-supported and clamped boundary conditions are considered and comparisons with the existing literature are made. The sample numerical results presented herein for global structural behaviour of monoclinic spherical shells should serve as references for future comparisons.  相似文献   

5.
研究了计及横向剪切的复合材料层合扁球壳在矩形脉冲载荷作用下的非线性动力屈曲问题;采用Galerkin方法得到以顶点挠度表达的动力响应方程,并用Runge-Kutta方法进行数值求解,应用Budiansky-Roth准则(简称B-R准则)确定冲击屈曲的临界荷载;讨论了壳体几何尺寸和物理参数对复合材料层合扁球壳冲击屈曲的影响;数值算例表明,该方法是可行的.  相似文献   

6.
Based on Timoshenko-Mindlin kinematic hypothesis, the shallow shell theory is extended to include the transverse shear deformation for the nonlinear axisymmetric dynamic analysis of the symmetric cross-ply shallow spherical shell. Using the orthogonal point collocation method and the Newmark scheme, an iterative solution is formulated. The numerical results for the nonlinear static and dynamic responses and dynamic buckling of these shallow spherical shells with circular holes under uniformly distributed static or dynamic normal impact loads are presented and compared with available data.  相似文献   

7.
This paper deals with nonlinear free vibration of reticulated shallow spherical shells taking into account the effect of transverse shear deformation. The shell is formed by beam members placed in two orthogonal directions. The nondimensional fundamental governing equations in terms of the deflection, rotational angle, and force function are presented, and the solution for the nonlinear free frequency is derived by using the asymptotic iteration method. The asymptotic solution can be used readily to perform the parameter analysis of such space structures with numerous geometrical and material parameters. Numerical examples are given to illustrate the characteristic amplitude-frequency relation and softening and hardening nonlinear behaviors as well as the effect of transverse shear on the linear and nonlinear frequencies of reticulated shells and plates.  相似文献   

8.
Summary In this paper, a model of cusped catastrophe at nonlinear dynamic buckling of a symmetrically laminated cylindrically orthotropic shallow spherical shell is presented. The shell is subjected to an axisymmetrical load. Effects of transverse shear are taken into account. Effects of the shear modulus, geometry and parameters of the material on the nonlinear dynamic buckling are discussed. Received 2 April 1997; accepted for publication 27 November 1997  相似文献   

9.
This paper is concerned with the transient deformation of functionally graded (FG) shallow spherical shells subjected to time-dependent thermomechanical load. Based on Timoshenko- Mindlin hypothesis and yon Karman nonlinear theory, a set of nonlinear governing equations of motion for FG shallow spherical shells in regard to transverse shear deformation and all the inertia terms are established using Hamilton's principle. The collocation point method and Newmark- beta scheme in conjunction with the finite difference method are adopted to solve the governing equations of motion and the unsteady heat conduction equation numerically. In the numerical examples, the transient deflection and stresses of FG shallow spherical shells with various material properties under different loading conditions are presented.  相似文献   

10.
傅衣铭 《力学学报》1995,27(5):624-630
基于Timoshenko-Mindlin假设及Hamilton原理,建立了一般纤维叠层圆柱厚壳在参数激励下的非线性振动方程;应用多模态近似和增量谐波平衡法求解了叠层圆柱厚壳的非线性动力稳定性问题。横向剪切变形、端部支承条件等因素的影响被讨论。  相似文献   

11.
A theoretical investigation is undertaken into the dynamic instability of complete spherical shells which are loaded impulsively and made from either linear elastic or elastic-plastic materials. It is shown that certain harmonics grow quickly and cause a shell to exhibit a wrinkled shape which is characterized by a critical mode number. The critical mode numbers are similar for spherical and cylindrical elastic shells having the same R/h ratios and material parameters, but may be larger or smaller in an elastic-plastic spherical shell depending on the values of the various parameters. Threshold velocities are also determined in order to obtain the smallest velocity that a shell can tolerate without excessive deformation. The threshold velocities for the elastic and elastic-plastic spherical shells are larger than those which have been published previously for cylindrical shells having the same R/h ratios and material parameters.  相似文献   

12.
13.
复合材料层合开顶扁球壳的非线性动态屈曲   总被引:10,自引:0,他引:10  
研究了复合材料层合开顶扁球壳的非线性动态屈曲问题。建立了对称层合圆柱正交异性开顶扁球壳考虑横向剪切的非线性振动微分方程,根据突变理论建立了该壳体动态屈曲的突变模型,得到了动态屈曲的临界方程。  相似文献   

14.
IntroductionWhencompositecylindricalshellsareundertheactionofdynamicloading ,theymayfallindynamicbucklingordynamicinstability .Ifthedynamicloadissuddenlyapplied ,oritischanginginstantaneously ,suchasimpulsiveloading ,then ,dynamicbucklingwillhappenforthesh…  相似文献   

15.
A dynamic, shear deformation theory of a doubly curved shell is used to develop a finite element for geometrically non-linear (in the von Karman sense) transient analysis of laminated composite shells. The element is employed to determine the transient response of spherical and cylindrical shells with various boundary conditions and loading. The effect of shear deformation and geometric non-linearity on the transient response is investigated. The numerical results presented here for transient analysis of laminated composite shells should serve as references for future investigations.  相似文献   

16.
In this paper, exact solutions of large deflection of multilayer sandwich shallow shells under transverse forces and different boundary conditions are presented. Exact results of postbuckling of multilayer sandwich plates, shallow cylindrical shells and nonlinear deflection of general shallow shells such as spherical shells under inplane edge forces are also obtained by the same procedure.  相似文献   

17.
A series of geometric and constitutive relations is studied for large axisymmetric strain of elastic shells of revolution. The kinematic assumption employs a modified Kirchhoff hypothesis which accounts for thickness changes but neglects transverse shear deformation. Calculations are presented for cylindrical and spherical shells composed of incompressible materials with two types of strain energy density function: Mooney-Rivlin (rubber) and exponential (biological tissue). Comparison of results for large bending at a clamped edge demonstrates the accuracy and limitations of various approximations for stress and strain. The computations indicate that the stress resultants are quite sensitive to the details of the asymmetric motion of points relative to the reference surface.  相似文献   

18.
A new modified version of the Timoshenko theory of thin shells is proposed to describe the process of deformation of thin shells with arbitrary displacements and strains. The new version is based on introducing an unknown function in the form of a rotation vector whose components in the basis fitted to the deformed mid-surface of the shell are the components of the transverse shear vector and the extensibility in the transverse direction according to Chernykh. For the case with the shell mid-surface fitted to an arbitrary non-orthogonal system of curvilinear coordinates, relationships based on the use of true stresses and true strains in accordance with Novozhilov are obtained for internal forces and moments. Based on these relationships, a problem of static instability of an isotropic spherical shell experiencing internal pressure is solved. The shell is considered to be made either of a linear elastic material or of an elastomer (rubber), which is described by Chernykh’s relationships.  相似文献   

19.
Based on Timoshenko-Mindlin kinematic hypotheses and Hamilton'sprinciple,a dynamic non-linear theory for general laminated circular cylindrical shellswith transverse shear deformation is developed.A multi-mode solution for periodic in-plane loads is formulated for the non-linear dynamic stability of an anti-symmetricangle-ply cylinder with its ends elastically restrained against rotation.The resultedequations in terms of time function are solved by the incremental harmonic balancemethod.  相似文献   

20.
Based on the nonlinear theory of shallow spherical thick shells and the damage mechanics, a set of nonlinear equations of motion for the laminated shallow spherical thick shells with damage subjected to a normal concentrated load on the top are established. According to Hertz law, the contact force acted upon the shells is determined due to the impact of a mass, and it is related to the mass and initial velocity of the striking object, the geometrical and physical character of the shell. By using the finite difference method and the time increment procedure, the nonlinear equations are resolved. In the numerical examples, the effects of the damage, the initial velocity, and mass of the striking object, the shells’ geometrical parameters on the dynamic responses and dynamic buckling of the laminated shallow spherical thick shells are discussed. Research of Y. Fu, Z. Gao and F. Zhu was supported by National Natural Science Foundation of China (No. 10572049).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号