首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
钚因放射性衰变而出现老化效应.钚中点缺陷的性质和行为是理解钚老化效应的一个基础和前提.运用分子动力学模拟技术,计算了金属钚中点缺陷和点缺陷团簇的形成能和结合能.其中钚-钚、钚-氦和氦-氦相互作用势分别采用嵌入原子多体势、Morse对势和Lennard-Jones对势.计算结果表明,单个自间隙原子易以〈100〉哑铃状形态存在;间隙氦原子在理想晶格的八面体间隙位置相对较为稳定;氦原子与空位的结合能较大,在钚的自辐照过程中两者易于结合并形成氦-空位团簇;氦-空位团簇的形成能随氦原子数的增加而增大,当氦与空位的数  相似文献   

2.
高能粒子辐照在材料内部产生大量的辐照缺陷,如间隙原子、空位、位错环、空洞和气泡等.大量辐照缺陷的形成和演化引起材料微观结构的失稳并造成严重的辐照硬化和脆化.界面工程是一种调控材料抗辐照性能的有效方法.通过引入高密度的晶界、相界、自由表面等来增加空位和间隙原子的复合概率,能有效降低辐照缺陷的积聚,提高材料的结构稳定性,消除或减弱辐照的有害效应.本文简述了几种典型金属材料界面与不同类型辐照缺陷的交互作用机理,分析了界面结构、缺陷类型和辐照条件对交互作用过程的影响,最后讨论了本领域需进一步关注的热点问题,期望运用多学科知识和研究方法更好地揭示辐照损伤过程并设计新型抗辐照损伤材料.  相似文献   

3.
本文应用基于密度泛函理论的第一原理方法,研究了NiAl金属间化合物中Ni空位对杂质C元素的多重俘获.研究结果表明:在Ni空位存在时,单个C原子最易于存在于空位中心附近的富Ni八面体间隙位置且与邻近的Ni原子和Al原子之间存在共价键形式的相互作用.多个C原子在NiAl中倾向于以"Sequential"的方式被Ni空位俘获,进而形成CnVNi(n=1,2,3,4)团簇.通过电荷密度和差分电荷密度分析得到,当Ni空位俘获多个C原子后,C原子之间有着优先于自身成键的特性.进一步,我们应用热力学模型计算了温度对于C_nV_(Ni)(n=1,2,3,4)团簇浓度及空位浓度的影响.研究表明本征Ni空位的浓度会随着温度的升高而升高.在NiAl金属间化合物中,大多数的杂质C原子会被Ni空位俘获而不是存在于远离Ni空位的八面体间隙位置.由于C原子被Ni空位俘获的过程是一个放热过程,使得体系温度升高,因此会进一步激发更多的Ni空位产生.但是在一定的温度范围内(温度小于700 K时),Ni空位均以C_nV_(Ni)团簇的形式存在.  相似文献   

4.
钨辐射损伤随辐照剂量变化的重离子辐照模拟研究   总被引:1,自引:0,他引:1  
采用重离子辐照模拟方法和正电子湮没寿命测量技术研究了钨辐射损伤随辐照剂量的变化。20,60和90dpa(每个原子的位移次数)辐照损伤水平的实验结果表明,辐照在钨中产生单空位、双空位、位错和空位团等缺陷;随辐照剂量的增大,单空位、双空位和位错浓度增加,空位团的尺度和浓度都随之增大。Radiation damage in W has been studied as a function of irradiation dose by heavy ion simulation and positron annihilation lifetime measurement. The experimental results of 20, 60 and 90 dpa irradiations illustrate that the mono-and di-vacancies, dislocations and vacancy clusters are produced by the irradiation. The concentrations of the mono-and di-vacancies and dislocations and both the concentration and size of the vacancy clusters or voids all increase with the increasing of the irradiation dose.  相似文献   

5.
何燕  周刚  刘艳侠  王皞  徐东生  杨锐 《物理学报》2018,67(5):50203-050203
六角金属由于其各向异性等特点,在塑性变形等过程中容易产生形状和构型都相对复杂的点缺陷团簇.这些团簇之间及其与运动位错等缺陷的相互作用直接影响材料的物理和力学性能.然而对相关问题的原子尺度、尤其是空位团簇的演化和微孔洞的形成乃至裂纹形核扩展等的理解还不全面.本文采用激发弛豫算法结合第一原理及原子间作用势,系统考察了钛中的空位团簇构型及不同构型间的相互转变,给出了不同尺寸空位团簇的稳定和亚稳构型、空位团簇合并分解和迁移的激发能垒等关键参数,发现较小的空位团簇形成稳定构型,较大的空位团簇呈现出空间对称分布趋势进而形成微孔洞;采用高通量分子动力学模拟系统研究了不同尺寸的空位团簇在拉应力作用下对变形过程的影响,发现这些空位团簇可以形成层错,并对微裂纹的形核产生影响.  相似文献   

6.
用重离子辐照模拟和正电子湮没寿命技术研究了改进型316L不锈钢在21 和33 dpa辐照剂量下的辐照损伤在室温到802 °C温度范围随辐照温度变化和室温下0—100 dpa剂量范围随辐照剂量变化. 在580 °C左右实验观察到辐照肿胀峰, 在21 和33 dpa辐照剂量下相应的空位团分别由14和19个空位组成, 尺度分别为0.68 和0.82 nm. 空位团尺寸随辐照剂量增加, 在100 dpa时空位团由8个空位组成, 尺度为0.55 nm. 实验结果表明, 在改进型316L不锈钢中辐照损伤随辐照温度变化更灵敏.  相似文献   

7.
利用强流脉冲(HCPEB)电子束技术对多晶纯Cu进行了辐照处理,并利用透射电镜对HCPEB诱发的空位簇缺陷进行了表征.实验结果表明,HCPEP辐照金属可在纯Cu表层诱发大量的过饱和空位,并形成四方形空位胞及空位型位错圈和堆垛层错四面体(SFT),HCPEB瞬间的加热和冷却诱发的幅值极大的应力和极高的应变导致的整个原子平面的位移是空位簇缺陷形成的主要原因.此外,扫描电镜分析表明HCPEB辐照可以在纯Cu表面形成高密度、弥散分布和尺寸细小的微孔.过饱和空位或空位团簇沿晶体缺陷向表面扩散、凝聚是表面微孔形成的根  相似文献   

8.
室温下在单晶Si中注入 (0 6— 1 5 )at%的C原子 ,部分样品在C离子注入之前在其中注入2 9Si 离子产生损伤 ,然后在相同条件下利用高温退火固相外延了Si1 -xCx 合金 ,研究了预注入对Si1 -xCx 合金形成的影响 .如果注入C离子的剂量小于引起Si非晶化的剂量 ,在 95 0℃退火过程中注入产生的损伤缺陷容易与C原子结合形成缺陷团簇 ,难于形成Si1 -xCx 合金 ,预注入形成的损伤有利于合金的形成 .随着C离子剂量的增大 ,注入产生的损伤增强 ,预注入反而不利于Si1 -xCx 合金的形成 ,但当注入C原子的浓度超过固相外延的溶解度时 ,预注入的影响可以忽略 .退火温度升高到 10 5 0℃ ,无论预注入还是未预注入样品 ,C含量低的合金相仍然保留 ,而C含量高的合金相大部分消失 .  相似文献   

9.
陈志权  河裾厚男 《物理学报》2006,55(8):4353-4357
在ZnO单晶样品中注入了能量为20—100keV、总剂量为4.4×1015cm-2的He离子.利用基于慢正电子束的多普勒展宽测量研究了离子注入产生的缺陷.结果表明,He离子注入ZnO产生了双空位或更大的空位团.在400℃以下退火后,He开始填充到这些空位团里面,造成空位团的有效体积减少.经过400℃以上升温退火后,这些空位团的尺寸开始增大,但由于有少量的He仍然占据在空位团内,因此直到800℃这些空位团仍保持稳定.高于800℃退火后,由于He的脱附,留下的空位团 关键词: 慢正电子束 ZnO 离子注入 缺陷  相似文献   

10.
利用强流脉冲电子束(HCPEB)技术对多晶纯铝样品进行辐照,采用透射电子显微镜详细分析了辐照诱发的空位簇缺陷.HCPEP辐照后,在辐照表层内形成了大量的四方形空位胞,其间包含位错圈和堆垛层错四面体(SFT)等类型的空位簇缺陷.1次辐照后,空位胞内产生空位型位错圈,5次辐照则主要产生SFT;10次辐照后,空位胞内产生的空位簇缺陷主要是位错圈,局部区域也观察到了SFT缺陷,在产生SFT的附近区域具有很低的位错密度或者几乎无位错出现.HCPEB辐照产生的瞬间加热和冷却诱发了幅值极大且应变速率极高的应力,这一因素 关键词: 强流脉冲电子束 多晶纯铝 空位簇缺陷 堆垛层错四面体  相似文献   

11.
The enhancement of diffusion by neutron irradiation has been investigated on a Cu-36 percent Zn alloy for various neutron fluxes and irradiation temperatures by means of in-pile measurements of electrical resistivity. For fresh samples the diffusion rate depends on temperature with an activation energy of 0.35 eV. During repeated irradiations the diffusion rate decreases and becomes nearly temperature independent. The variation of the concentration of interstitials and vacancies with irradiation time has been numerically calculated for various neutron fluxes, irradiation temperatures and sink concentrations. A comparison of the experimental and theoretical results shows that the point defects annihilate in fresh samples mainly by pair recombination and in samples which had been repeatedly cycled by pair recombination and at fixed sinks. Point defect clusters acting as sinks are created during the course of the irradiation as shown by electron microscope investigations. The radiation enhanced diffusion rate was found to depend on interstitials only, the activation energy of which was determined to 0.70 eV.  相似文献   

12.
The radiation-induced vacancy swelling of quasicrystals is considered. In quasicrystals, the dislocation kinetics involves the formation of phasons: vacancy- and interstitial-like localized topological defects. Phasons interact with radiation-induced point defects (PD; vacancies and interstitials) and influence the swelling behavior of quasicrystals. After absorption of vacancies, phasons of the interstitial type transform into phasons of the vacancy type and vice versa. In other words, phasons are the recombination centers of alternating polarity for PD. Assuming that (i) the production rate of phasons is proportional to the dislocation climbing rate and (ii) voids are the sinks for mobile phasons, the set of rate equations for PD and phasons is formulated and analyzed both analytically and numerically. It is shown that the swelling rate is lower in quasicrystals compared with crystals. Growth rates of loops and voids, as well as the swelling rate, strongly depend on the phason concentration which is controlled by phason diffusion to sinks.  相似文献   

13.
A simple theory of the swelling of materials subjected to high energy particle irradiation is developed. Chemical reaction rate equations are used as a basis. Point defects, interstitials and vacancies, are assumed to be produced randomly throughout the solid. They move by random walk through the material until they cease to exist either by recombination with the opposite type of defect or by incorporation into the crystal at sinks such as dislocations, grain boundaries and voids. The rate equations for interstitials and for vacancies, which are coupled via the recombination term, are solved for steady state conditions under irradiation. Defect concentrations, supersaturations, recombination and total sink annihilation rates are obtained in terms of the production rate, sink annihilation probabilities, jump frequencies and thermal equilibrium concentrations of defects. The swelling rate is derived using sink annihilation probabilities at three principally different types of sinks, i.e. voids, sinks which have a bias with regard to the annihilation of interstitials and vacancies (such as dislocations), and sinks with no bias. The defect annihilation probabilities at void, precipitate, dislocation and grain boundary sinks are estimated by using a cellular model and solving the diffusion equation for geometries approximating that of the cells, e.g. a concentric sphere around a void. The relative effects of different types of sinks, i.e. the microstructure, on the swelling rate is discussed. The swelling rate is integrated to give swelling-time or swelling-dose relations, making some simplifying assumptions about the changes in the sink structure as the irradiation proceeds. It is shown that the relation obtained is rather sensitive to the type of assumptions made.  相似文献   

14.
The distribution of interstitials and vacancies in a foil under irradiation has been calculated as a function of both distance from the surface and irradiation time by solving the diffusion equation numerically on a computer. The defects were considered to annihilate at randomly distributed sinks, by mutual recombination, and by diffusion to the surface. Defect jump frequencies appropriate to silver at 125°C and foil thicknesses of 1 pm and 300 A were used. Large “humps” in the plot of vacancy concentration versus distance were found near the surface of the 1 pm foil at short irradiation times, unless the internal sink concentration was high. These humps may be responsible for some unusual void distributions observed near grain boundaries.  相似文献   

15.
Knowledge of defects generation, their mobility, growth rate, and spatial distribution is the cornerstone for understanding the surface and structural evolution of a material used under irradiation conditions. In this study, molecular dynamics simulations were used to investigate the coupled effect of primary knock-on atom (PKA) energy and applied strain (uniaxial and hydrostatic) fields on primary radiation damage evolution in pure aluminum. Cascade damage simulations were carried out for PKA energy ranging between 1 and 20 keV and for applied strain values ranging between ?2% and 2% at the fixed temperature of 300 K. Simulation results showed that as the atomic displacement cascade proceeds under uniaxial and hydrostatic strains, the peak and surviving number of Frenkel point defects increases with increasing tension; however, these increments were more prominent under larger volume changing deformations (hydrostatic strain). The percentage fraction of point defects that aggregate into clusters increases under tension conditions; compared to the reference conditions with no strain, these increases are around 13% and 7% for interstitials and vacancies, respectively (under 2% uniaxial strain), and 19% and 11% for interstitials and vacancies, respectively (under 2% hydrostatic strain). Clusters formed of vacancies and interstitials were both larger under tensile strain conditions, with increases in both the average and maximum cluster sizes. The rate of increase/decrease in the number of Frenkel pairs, their clustering, and their size distributions under expansion/compression strain conditions were higher for higher PKA energies. Overall, the present results suggest that strain effects should be considered carefully in radiation damage environments, specifically for conditions of low temperature and high radiation energy. Compressive strain conditions could be beneficial for materials used in nuclear reactor power systems.  相似文献   

16.
When an alloy is irradiated, atomic transport can occur through the two types of defects which are created: vacancies and interstitials. Recent developments of the self-consistent mean field (SCMF) kinetic theory could treat within the same formalism diffusion due to vacancies and interstitials in a multi-component alloy. It starts from a microscopic model of the atomic transport via vacancies and interstitials and yields the fluxes with a complete Onsager matrix of the phenomenological coefficients. The jump frequencies depend on the local environment through a ‘broken bond model’ such that the large range of frequencies involved in concentrated alloys is produced by a small number of thermodynamic and kinetic parameters. Kinetic correlations are accounted for through a set of time-dependent effective interactions within a non-equilibrium distribution function of the system. The different approximations of the SCMF theory recover most of the previous diffusion models. Recent improvements of the theory were to extend the multi-frequency approach usually restricted to dilute alloys to diffusion in concentrated alloys with jump frequencies depending on local concentrations and to generalize the formalism first developed for the vacancy diffusion mechanism to the more complex diffusion mechanism of the interstitial in the dumbbell configuration. To cite this article: M. Nastar, C. R. Physique 9 (2008).  相似文献   

17.
Radiation breakdown in silicon slabs is observed and studied as revealed in anomalous behavior of the dose characteristics of their radiation defects when the radiative intensity is varied. A theory is constructed for reversible radiation breakdown due to the bistability which develops in a gas of radiation vacancies when the gas can be regarded as quasi-two-dimensional. In order to explain the exponential saturation of the dose characteristics as the irradiation intensity is increased, scenarios are proposed in which different forms of the constituent radiation defects develop. Some parameters of the bistable gas of primary vacancies are estimated, including diffusion coefficients, dimensions of inhomogeneity regions, and the rate of movement of the stratification line. On the whole, satisfactory agreement with experiment is obtained. Discrepancies between the diffusion coefficient for neutral vacancies obtained here and in the literature are attributed to the role of interband recombination accompanying radiation defect formation during electron bombardment. Zh. éksp. Teor. Fiz. 114, 1067–1078 (September 1998)  相似文献   

18.
Evolution of radiation barrier (vacancies and interstitials) clusters is analyzed under low temperature radiation in the presence of the most important secondary effects: recombination and formation of divacancy complexes. It is proposed a barrier hardening model in that mechanisms of mutual annihilation of the vacancy and interstitial barriers and their clusterization play a main role. It is taken into account reducing barrier densities due to barrier mutual annihilation of two different types and developing the large clusters by interconnection of two barriers of the same type.  相似文献   

19.
The effect of intermetallic nanoparticles like Ni3Al and nanoparticles of an Fe-rich bcc phase on the evolution of vacancy defects in an fcc Fe–34.2 wt% Ni–5.4 wt% Al model alloy under electron irradiation at elevated temperatures (423 and 573 K) was investigated using positron annihilation spectroscopy. Nanosized (1–8 nm) particles, which are homogeneously distributed in the alloy matrix, cause a several-fold decrease in the accumulation of vacancies as compared to their accumulation in a quenched alloy. This effect depends on the size and the type of nanoparticles. The effect of the nanoparticles increases when the irradiation temperature increases. The irradiation-induced nucleation and the growth of intermetallic nanoparticles were also observed in an alloy pre-aged at 1023 K under irradiation at 573 K. Thus, a quantum-dot-like positron state within ultrafine intermetallic particles, which we revealed earlier, allows control of the evolution of coherent precipitates like Ni3Al, along with vacancy defects, during irradiation and subsequent annealing. Possible mechanisms of the absorption of point defects by nanoparticles are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号