首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The leaf essential oils of Zanthoxylum rhoifolium and Zanthoxylum setulosum (Rutaceae) from Monteverde, Costa Rica have been obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry. The principal constituents of Z. rhoifolium leaf oil were germacrene D (14.6%), limonene (12.5%), trans-2-hexenal (11.3%), beta-elemene (9.2%), 2-undecanone (9.2%), myrcene (7.9%), bicyclogermacrene (7.5%), and germacrene A (5.2%). The leaf oil of Z. setulosum was composed largely of beta-phellandrene (37.5%), beta-caryophyllene (13.7%), alpha-pinene (11.9%), germacrene D (10.9%), myrcene (5.9%), and nerolidol (5.4%). The essential oils were screened for in-vitro cytotoxic activity against Hep G2, MCF-7, and PC-3 human tumor cell lines; antibacterial activity against Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli; and for Artemia salina (brine shrimp) lethality. Neither Z. rhoifolium nor Z. setulosum leaf oils exhibited cytotoxicity or antibacterial activity. Both oils showed activity against A. salina.  相似文献   

2.
The volatile oil of the leaves of Pogostemon heyneanus Benth. (Lamiaceae) was analyzed by GC and GC-MS. Twenty-six components representing 96.0% of the oil were identified. The major components of the oil were acetophenone (51.0%), beta-pinene (5.3%), (E)-nerolidol (5.4%), and patchouli alcohol (14.0%). Comparison of the compositions of the oils of P. heyneanus and P. cablin (Blanco) Benth. (Patchouli oil) showed wide variation between them. Though 13 sesquiterpenes and oxygenated sesquiterpenes were detected in both oils, their concentrations in the oils differed widely. Acetophenone, benzoyl acetone and (E)-nerolidol present in the oil of P. heyneanus were not detected in patchouli oil.  相似文献   

3.
In countries where leishmaniasis is endemic, there are not very many treatment alternatives and most options have problems associated with their use. Plants and their natural products constitute good sources of interesting lead compounds that could be potentially active against Leishmania. Chenopodium ambrosioides is a plant that is widely used in popular medicine and its antiparasitic effects have been documented, including the antileishmanial potentialities of Chenopodium oil. The objective of this study was to determine the chemical composition, in-vitro cytotoxicity and antileishmanial activity of essential oils extracted from C. ambrosioides, which received different treatments prior to extraction. The chemical characterization by GC-MS of the three essential oil samples showed similar composition and the major components were alpha-terpinene (17.0-20.7%), p-cymene (20.2-21.1%) and ascaridole (30.5-47.1%). The essential oils exhibited similar antileishmanial activities against intracellular amastigote form, with IC50 values between 4.7 and 12.4 microg/mL. However, a lower cytotoxicity was displayed by the essential oil extracted from fresh green vegetable material, which was statistically different (P < 0.05) from the other samples. This study demonstrated that the prior treatment of plant material did not interfere with the antiparasitic activity of essential oils from C. ambrosioides but did change their cytotoxicity, which should be taken into account in further studies.  相似文献   

4.
Previous studies have reported promising antimicrobial efficacy for the essential oils and solvent extracts of several indigenous Pelargonium species. This study aimed to determine if any pharmacological interaction (e.g. synergism or antagonism) exists between the volatile and non-volatile components when the different fractions were investigated. The antimicrobial activity of the following fractions were tested; the essential oil prepared by hydrodistillation (EO), non-volatile fraction (NV), prepared by extraction of plant material remaining in the distilling apparatus (having no or negligible volatile constituents) and solvent extracts prepared from fresh (FC) and dried (DC) plant material containing both volatile and non-volatile constituents. Pelargonium quercifolium oil was dominated by p-cymene (42.1%) and viridiflorol (16.9%), while P. graveolens and P. tomentosum oil had high levels of isomenthone (84.0 and 58.8%, respectively). Menthone was noted as a major constituent in the P. tomentosum EO sample. It was evident from the results that the presence of volatile constituents in the three species; P. graveolens, P. quercifolium and P. tomentosum is generally not a pre-requisite for antimicrobial activity. The most significant variations of antimicrobial activity were noted for P. tomentosum where poorer activity was noted for the FC and EO fractions against Bacillus cereus and Candida albicans. Studies on Staphylococcus aureus, however, showed the converse, where best activity was noted for the FC fraction (3.0 mg/mL). For P. quercifolium, the DC fraction indicated a notable increase in anti-staphylococcal activity (2.0 mg/mL) when compared with the FC (8.0 mg/mL) and EO (16.0 mg/mL) fractions. For P. tomentosum, the FC fraction indicated much lower antimicrobial activity (against both B. cereus and C. albicans) when compared with all other fractions, suggesting that the essential oils may impact negatively on the antimicrobial activity when tested against these two pathogens.  相似文献   

5.
Morinda lucida (L.) Benth. (Rubiacae) is used in traditional medicine in many West African countries for the treatment of various human diseases. The leaves and roots of this plant were subjected to hydro-distillation to obtain volatile oils which were analyzed by high resolution GC/MS. Fifty compounds were identified in the leaf volatile oil and the major compounds were alpha-terpinene (17.8%) and beta-bisabolene (16.3%). In the root oil, 18 compounds were identified, the major constituents being 3-fluoro-p-anidine (51.8%) and hexadecanoic acid (12.0%). Antioxidant activities of the oils were examined using the DPPH, ABTS, reducing power and lipid peroxidation assays. All assays were concentration dependent with varying antioxidant potentials. The antioxidant activity of the root volatile oil of M. lucida was similar to that of the standard drugs used.  相似文献   

6.
This study investigates the seasonal variation of three species of Leptospermum (Myrtaceae) grown in Brazil. The chemical composition of the volatile oils of L. flavescens and L. petersonii did not show any significant seasonal variation in the major components, while for Leptospermum madidum subsp. sativum the levels of major constituents of the volatile oils varied with the harvest season. Major fluctuations in the composition of L. madidum subsp. sativum oil included α-pinene (0-15.2%), β-pinene (0.3-18.5%), α-humulene (0.8-30%), 1,8-cineole (0.4-7.1%) and E-caryophyllene (0.4-11.9%). Levels of β-pinene (0.3-5.6%), terpinen-4-ol (4.7-7.2%) and nerolidol (55.1-67.6%) fluctuated seasonally in the L. flavescens oil. In L. petersonii, changes were noted for geranial (29.8-32.8%), citronellal (26.5-33.9%) and neral (22.7-23.5%). The activity of the volatile oils against the tested bacteria differed, depending on season the oils were obtained. In general, the volatile oils were more active against Gram-positive bacteria.  相似文献   

7.
The chemical composition of the volatile oils from five Anacardiaceae species and their activities against Gram positive and negative bacteria were assessed. The peroxidative damage within bacterial cell membranes was determined through the breakdown product malondialdehyde (MDA). The major constituents in Anacardium humile leaves oil were (E)-caryophyllene (31.0%) and α-pinene (22.0%), and in Anacardium occidentale oil they were (E)-caryophyllene (15.4%) and germacrene-D (11.5%). Volatile oil from Astronium fraxinifolium leaves were dominated by (E)-β-ocimene (44.1%) and α-terpinolene (15.2%), whilst the oil from Myracrodruon urundeuva contained an abundance of δ-3-carene (78.8%). However, Schinus terebinthifolius leaves oil collected in March and July presented different chemical compositions. The oils from all species, except the one from A. occidentale, exhibited varying levels of antibacterial activity against Staphylococcus aureus, Bacillus cereus and Escherichia coli. Oil extracted in July from S. terebinthifolius was more active against all bacterial strains than the corresponding oil extracted in March. The high antibacterial activity of the M. urundeuva oil could be ascribed to its high δ-3-carene content. The amounts of MDA generated within bacterial cells indicate that the volatile oils induce lipid peroxidation. The results suggest that one putative mechanism of antibacterial action of these volatile oils is pro-oxidant damage within bacterial cell membrane explaining in part their preservative properties.  相似文献   

8.
卫强  刘洁 《应用化学》2016,33(6):719-726
研究了大叶黄杨叶、茎、果挥发油的化学成分及抗病毒活性。 采用超临界二氧化碳萃取,应用气相色谱-质谱联用(GC-MS) 法鉴定挥发油化学成分,考察体外抗病毒作用。 共鉴定133个化合物,大叶黄杨叶挥发油中主要有2-乙氧丙烷(41.92%)、(E)-2-己烯-1-醇(17.8%)、 (E)-香叶醇(7.86%)、甲基环己烷(6.60%)等;大叶黄杨茎挥发油中主要有甲氧基苯基肟(33.10%)、二十八烷(14.34%)、α-甲基-α-[4-甲基-3-戊烯基]环氧乙烷甲醇(12.48%)、甲苯(11.88%)、二十一烷(7.74%) 等;大叶黄杨果挥发油中主要有苯甲醛(15.52%)、甲苯(15.03%)、甲基环己烷(14.76%)、(Z)-3-己烯-1-醇(10.98%)等。 大叶黄杨叶、茎、果的环己烷、乙醚萃取挥发油对特定病毒有显著抑制效果。 大叶黄杨叶、茎、果中挥发油萃取部位成分差异明显,有特定抗病毒活性。  相似文献   

9.
The essential oil and the volatile compounds of Myrica gale fruits were analysed by gas chromatography (GC) and GC-mass spectrometry (GC-MS). The volatile compounds were detected using two different fibres for headspace-solid phase microextraction (HS-SPME), Carboxen/PDMS and PDMS. Sixty two compounds were identified, which represented more than 90% of the total extracts. Major components of fruit essential oil are alpha-pinene (22.6%), 1,8-cineole (18.9%) and germacrone (14.2%), whereas they are germacrone (25.1%), alpha-pinene (12.2%), limonene (8.1%) and alpha-phellandrene (8.0%) for the leaf essential oil. Major volatile fruit compounds detected in HS-SPME were alpha-pinene, 1,8-cineole, p-cymene and eth-cadinene. As M. gale fruits are traditionally used in brewery for flavouring beer or as a spice in soups or stews, the antifungal properties of these essential oils were investigated on a panel of foodborne fungi, namely Aspergillus flavus, Cladosporium cladosporioides and Penicillium expansum. A complete antifungal activity was observed at 1000 ppm against C. cladosporioides. Both essential oil and entire fruits could thus be used as an additive in food or cosmetic preparations for their flavour, odour and their conservative properties.  相似文献   

10.
This paper reports on the volatile components of oils from the aerial parts (CBA) and roots (CBR) of Centaurea bracteata Scop. and aerial parts of C. pannonica (Heuffel) Simonkai subsp. pannonica (CPA), two Asteraceae growing wild in Croatia. The volatile components, obtained by hydrodistillation, were determined by GC-MS analysis. The yields (w/w) of the dried oils were 0.10% (CBA), 0.22% (CBR) and 0.09% (CPA), respectively. A total of 91 compounds were identified accounting for 91.1%, 93.3% and 87.9% of the total oil for CBA, CBR and CPA, respectively. All the samples were characterized mainly by hydrocarbons (7.1-34.1%), fatty acids (9.7-45.9%), and oxygenated sesquiterpenes (15.2-16.6%). The major components of the samples were hexadecanoic acid (8.1-31.1%), nonacosane (0.6-13.4%) and caryophyllene oxide (4.5-11.9%). Monoterpenes, both hydrocarbons and oxygenated, were either absent or present in low amounts in all the oils. The similarity in the oil contents is consistent with the two species being placed in the same section, Jacea.  相似文献   

11.
The in-vitro antioxidant activity of natural (essential oils, vitamin E) or synthetic substances ( tert-butyl hydroxy anisole (BHA), Trolox) has been evaluated by monitoring volatile carbonyl compounds released in model lipid systems subjected to peroxidation. The procedure employed methodology previously developed for the determination of carbonyl compounds as their pentafluorophenylhydrazine derivatives which were quantified, with high sensitivity, by means of capillary gas chromatography with electron-capture detection. Linoleic acid and sunflower oil were used as model lipid systems. Lipid peroxidation was induced in linoleic acid by the Fe2+ ion (1 mmol L-1, 37 degrees C, 12 h) and in sunflower oil by heating in the presence of O2 (220 degrees C, 2 h). The change in hexanal (the main lipoxidation product) concentration found in the lipid matrix subjected to oxidation with and without the substance being tested was used to calculate the antioxidant protection effect. These procedures were employed to evaluate the antioxidant activity of the essential oils of cilantro ( Coriander sativum L.), fennel ( Foeniculum vulgare Mill.), rosemary ( Rosmarinus officinalis L.), "salvia negra" ( Lepechinia schiedeana), and oregano ( Origanum vulgare L.), and the well-known antioxidants BHA, vitamin E, and Trolox, its water-soluble analog. In the sunflower oil system, the essential oils had a stronger protective effect against lipid peroxidation than BHA, vitamin E, and Trolox within the range of concentrations examined (1-20 g L-1). The highest protecting effect, corresponding to a 90% drop in hexanal release, was observed for cilantro oil at 10 g L-1.  相似文献   

12.
Isolation of volatile concentrate from the dried leaves of Artemisia arborescens and of Helichrysum splendidum has been obtained by supercritical extraction with carbon dioxide. To obtain a pure volatile extract devoid of cuticular waxes, the extraction products were fractionated in two separators operating in series. A good extraction process was obtained operating at 90 bar and 50 degrees C in the extraction vessel, at 90 bar and at -5 degrees C in the first separator and at a pressure between 20 and 15 bar and temperatures in the range 10-20 degrees C in the second one. The composition of the volatile concentrate has been analyzed by GC/MS. The volatile concentrate of A. arborescens was found to contain: trans-thujone (13.96%), camphor (6.15%) and chamazulene (5.95%).The main constituents in the extract of H. splendidum were: germacrene D-4-ol (17.08%), germacrene D (9.04%), bicyclogermacrene (8.79%) and delta-cadinene (8.43%). A comparison with the oils obtained by hydrodistillation is also given.The differences observed between the composition of the SFE volatile concentrates and of the hydrodistilled (HD) oils were relevant. Indeed, the HD oils had a blue color whereas the volatile concentrates were pale yellow. The HD oil of H. splendidum had a blue color due to the presence of guaiazulene (0.42% vs 0%), whereas the coloration of HD oil of A. arborecens was due to the high concentration of chamazulene (26.64% vs 3.37%).  相似文献   

13.
In this study, flowering aerial parts of wild Achillea millefolium growing on the Mediterranean coast (Sardinia Island, Italy) and on the Atlantic coast (Portugal- Serra de Montemuro) were used as a matrix for supercritical extraction of volatile oil with CO2 (SFE). The collected extracts were analyzed by GC-FID and GC-MS methods and their composition were compared with that of the essential oil isolated by hydrodistillation. A strong chemical variability in essential oils depending on the origin of the samples was observed. The results showed the presence of two type oils. The Italian volatile extracts (SFE and essential oil) are predominantly composed by alpha-asarone (25.6-33.3%, in the SFE extract and in the HD oil, respectively), beta-bisabolene (27.3-16.6%) and alpha-pinene (10.0-17.0%); whereas the main components of the Portuguese extracts are trans-thujone (31.4-29.0%), trans-crhysanthenyl acetate (19.8-15.8%) and beta-pinene (1.2-11.1%). The minimal inhibitory concentration (MIC) and the minimal lethal concentration (MLC) were used to evaluate the antifungal activity of the oils against Candida albicans, C. tropicalis, C. krusei, C. guillermondii, C. parapsilosis, Cryptococcus neoformans, Trichophyton rubrum, T. mentagrophytes, T. mentagrophytes var. interdigitale, T. verrucosum, Microsporum canis, M. gypseum, Epidermophyton floccosum, Aspergillus niger, A. fumigatus and A. flavus. The oils showed the highest activity against dermatophyte strains, with MIC values ranging from 0.32-1.25 microL mL(-1).  相似文献   

14.
The aim of the present study was to characterize and classify olive oils from Western Greece according to cultivar and geographical origin, based on volatile compound composition, by means of Linear Discriminant Analysis. A total of 51 olive oil samples were collected during the harvesting period 2007-2008 from six regions of Western Greece and from six local cultivars. Forty-five of the samples were characterized as extra virgin olive oils. The analysis of volatile compounds was performed by Headspace Solid Phase Microextraction-Gas Chromatography/Mass Spectrometry (HS-SPME-GC/MS). Fifty-three (53) different volatile compounds were tentatively identified and semi-quantified. Using selected volatile compound composition data (selection was based on the application of ANOVA to total volatiles to determine those variables showing substantial differences among samples of different geographical origin/cultivar), the olive oil samples were satisfactorily classified according to geographical origin (87.2%) and cultivar (74%).  相似文献   

15.
佩兰挥发性化学成分的固相微萃取研究   总被引:1,自引:0,他引:1  
采用固相微萃取-气相色谱-质谱法分析佩兰中挥发性化学成分,共分离出84个组分,并鉴定了67个组分,用归一化法测定其质量分数,占总挥发性组分峰面积的98.05%。主要成分是对-伞花烃(5.19%)、芳樟醇(3.72%)、β-石竹烯(12.35%)、α-律草烯(13.39%)、α-姜黄烯(2.11%)、(-)-石竹烯氧化物(8.25%)、. /-.-4-乙酰基-1-甲基环己烯(8.91%)。  相似文献   

16.
The major volatile constituents of leaves and flowers of Cymbopogon martini from the volatile oil obtained by steam distillation were identified by GC/MS. Five constituents were identified from the volatile oil of leaves and flowers, which constituted about 82.49 and 75.63% of the total amount, respectively. A monoterpene, piperitone (6.00%), was identified in the flowers of C. martini; in addition, flowers were found to contain more olefinic terpenes, namely geraniol (69.63%), compared with leaves (53.41%). Leaves contain bicyclic monoterpene, nerol (24.76%) and alpha-pinene (4.32%). Anthelmintic activity of these oils was evaluated on adult Indian earthworms Pheretima posthuma and results showed that the volatile oil of C. martini flower required less time to cause paralysis and death of the earthworms.  相似文献   

17.
柽柳实中挥发油和脂肪酸分析   总被引:1,自引:1,他引:0  
首次研究了维药细穗柽柳(Tamarix leptostachys Bunge)实中挥发油和脂肪酸的化学成分。 分别采用药典中的挥发油提取法和索式取提法提取柽柳实中的挥发油和脂肪酸,使用气质联用技术获取总离子流图,各色谱峰相应的质谱图经过NIST2011标准谱库检索定性,并采用峰面积归一化法进行定量分析,计算各成分的相对百分含量。 两种方法分别鉴定出48种挥发油和19种脂肪酸。 挥发油主要成分为芳香类化合物(43.71%)、芳香性醛酮类(20.58%)、脂肪酸类(13.03%)、酯类(17.36%)和醇类(4.19%)等。 脂肪酸主要成分为棕榈酸(35.61%)、亚油酸(27.26%)和油酸(11.33%)等,其中不饱和脂肪酸含量占总脂肪酸含量的38.65%。 维药细穗柽柳实中富含丰富的挥发油和不饱和脂肪酸,具有很好的开发利用价值。  相似文献   

18.
Exhaustive hydro-distillation of the leaves of Piper aduncum and fruits of Piper gibbilimbum (Piperaceae) afforded colorless and pale orange colored oils in 0.35 and 0.30 % yields, respectively. Detailed chemical analysis by GC/MS indicated the volatile constituents of Piper aduncum to be composed of dill apiole (43.3%), beta-caryophyllene (8.2%), piperitione (6.7%) and alpha-humulene (5.1%), whilst the oil of P. gibbilimbum is dominated by the gibbilimbols A-D (74.2%), with the remaining major constituents being the terpenes camphene (13.6%) and alpha-pinene (6.5%).  相似文献   

19.
采用水蒸气蒸馏法提取南方红豆杉种子中的挥发油,测得南方红豆杉种子挥发油的收率为2.5%。通过GC-MS技术分析了南方红豆杉种子中挥发油的化学成分。按照GC/MS通用法则,初步确定了24种化合物的结构。并用峰面积归一化法得出在挥发油中的各化学成分。其中主要成分酸类占挥发油总量的81.28%.其次的烷烃类化合物为12.74%,醛类化合物为1.80%,不饱和烷烃类化合物1.44%,醇类化合物占0、89%,酯类化合物为0.52%,胺类化合物为0.34%。这几类物质占种子中挥发油总量的99.01%。  相似文献   

20.
The essential oil from the aerial parts of Nephrolepis exaltata and Nephrolepis cordifolia obtained by hydro-distillation were analyzed by gas chromatography/ mass spectrometry. The essential oils exhibited potential antibacterial and antifungal activities against a majority of the selected microorganisms. NEA oil showed promising cytotoxicity in breast, colon and lung carcinoma cells. The results presented indicate that NEA oil could be useful alternative for the treatment of dermatophytosis.

Comparative investigation of hydro-distilled volatile constituents from aerial parts (A) of Nephrolepis exaltata (NE) and Nephrolepis cordifolia (NC) (Family Nephrolepidaceae) was carried out. Gas chromatography/mass spectrometry revealed that oils differ in composition and percentages of components. Oxygenated compounds were dominant in NEA and NCA. 2,4-Hexadien-1-ol (16.1%), nonanal (14.4%), β-Ionone (6.7%) and thymol (2.7%) were predominant in NEA. β-Ionone (8.0%), eugenol (7.2%) and anethol (4.6%) were the main constituents in NCA. Volatile samples were screened for their antibacterial and antifungal activities using agar diffusion method and minimum inhibitory concentrations. The cytotoxic activity was evaluated using viability assay in breast (MCF-7), colon (HCT-116) and lung carcinoma (A-549) cells by the MTT assay. The results revealed that NEA oil exhibited potential antimicrobial activity against most of the tested organisms and showed promising cytotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号