首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The continuum generation by intense femtosecond IR laser pulses focused in air including the effect of third-harmonic generation is investigated. We have used a theoretical model that includes the full spatio-temporal dynamics of both the fundamental and the third-harmonic pulses. Results of our numerical calculations show that a two-color filamentation effect occurs, in which the third-harmonic conversion efficiency remains almost constant over the whole filament length. It is found that this effect is rather independent of the wavelength of the input beam and the focal geometry. During the filamentation process the third-harmonic pulse itself generates a broad continuum, which can even overlap with the continuum of the fundamental pulse for the longer pump wavelengths. In consequence, the continuum generation generated by intense IR laser pulses is further extended into the UV. PACS 42.65.Jx; 42.65.Ky; 52.35.Mw  相似文献   

2.
Kolesik M  Wright EM  Moloney JV 《Optics letters》2007,32(19):2816-2818
It is demonstrated numerically that the supercontinuum generation and third-harmonic generation that accompany optical filamentation in nonlinear dispersive bulk media can be described as first-order scattering processes akin to the first Born approximation. In particular, for an incident ultrashort pulse the angularly resolved spectrum of the transmitted pulse is shown to be accurately determined using first-order scattering of the incident field from the nonlinearly modified refractive index due to the optical filament. Thus, although an optical filament is a highly nonlinear object, the accompanying supercontinuum generation and third-harmonic generation are driven parametrically by the filament and have negligible back action upon it.  相似文献   

3.
Self-stabilization of the laser pulse parameters is demonstrated during the two-color filamentation of ultrashort and intense laser pulses in gases. Experimental data and results of numerical simulations show, in good qualitative agreement, that the root-mean-square values of the intensity fluctuations decrease below the initial value for the near-infrared pump pulse and the perturbative limit for the third-harmonic pulse in the filament. It is found that the stabilization of the third-harmonic intensity and energy are due to intensity clamping of the pump pulse and a constant ‘volume’ of the laser pulse during the nonlinear propagation inside the filament. PACS 42.65.Ky; 42.65.Jx; 52.35.Mw  相似文献   

4.
李敏  李安原  何泊衢  袁帅  曾和平 《中国物理 B》2016,25(8):84209-084209
We demonstrate spectral modulation of third-harmonic generation from molecular alignment effects. The third harmonic spectrum is broadened or narrowed under different influences of cross-phase modulations originating from various molecular alignment revivals. Furthermore, the spectrum and spatial distribution of the generated third harmonic pulse change dramatically in the presence of a preformed plasma. Under the influence of a preformed plasma, a narrower third harmonic spectrum is observed, and the conical third-harmonic pulse increases while the axial part decreases. The investigation provides an effective method to modulate the spectral characteristic and spatial distribution of third-harmonic generation from intense femtosecond filament.  相似文献   

5.
The distance-resolved spectral intensity distribution of the backscattered light from long filaments generated in air using ultra-short and intense laser pulses is presented. A clean fluorescence spectrum from N2 molecules and ions, which is produced by the high peak intensity inside the plasma filament of the fundamental pulse, was clearly resolved from the backscattered supercontinuum. The supercontinuum generated by both the fundamental and the third-harmonic pulses developed progressively and became fully developed only at the end of the filamentation.  相似文献   

6.
We numerically study the influence of the initial carrier-envelope phase (CEP) on the filamentation of ultrashort laser pulses in noble gas. Emphasis is put on the CEP-induced changes of pulses that reach their clamping intensity during near-cycle self-compression. In other propagation regimes, the CEP does not significantly alter the pulse evolution. Our results indicate that third-harmonic generation, compared to plasma generation, is dominant in driving these changes. Finally, the stability of the filament CEP against shot-to-shot fluctuations is examined.  相似文献   

7.
Filamentation nonlinear optics   总被引:1,自引:0,他引:1  
A filamenting femtosecond laser pulse self-stabilizes the intensity fluctuation inside the filament core due to intensity clamping and generates an excellent spatial beam quality inside the core due to self-spatial filtering. The high quality of the core can be sampled by nonlinear processes. A few experimental examples are shown: self-phase modulation, four-wave mixing, third-harmonic generation and waveguide writing in glass. PACS 42.65.Jx; 52.35.Mw  相似文献   

8.
Generation of sub-20-fs UV pulses with more than 300 μJ energy at 268 nm is reported. First, the UV pulses are produced by successive second-harmonic and third-harmonic (TH) generation of 805 nm pulses of a 1 kHz Ti:sapphire laser amplifier. The spectral broadening of TH pulses is realized in a filament, generated in argon. The produced pulses are compressed in a simple double-pass prism-pair compressor. Starting from 100 fs pulses, we achieve a fivefold pulse shortening.  相似文献   

9.
讨论了群速度失配、自相位调制和交叉相位调制、晶体厚度、基波的频率啁啾等因素对超短脉冲单块晶体的三次谐波转换效率、三倍频光脉冲形状以及频谱的影响.结果表明:群速度延迟使三倍频光脉冲展宽;自相位调制和交叉相位调制会降低转换效率,并使三倍频光脉冲形状发生畸变;晶体厚度对三倍频光脉冲频谱展宽有着较大的影响;合适的基频光频率啁啾可以减小三倍频光脉冲的畸变,并有效地提高三倍频转换效率.  相似文献   

10.
The resonant third-harmonic generation of a self-focusing laser in plasma with a density transition was investigated. Because of self-focusing of the fundamental laser pulse, a transverse intensity gradient was created, which generated a plasma wave at the fundamental wave frequency. Phase matching was satisfied by using a Wiggler magnetic field, which provided additional angular momentum to the third-harmonic photon to make the process resonant. An enhancement was observed in the resonant third-harmonic generation of an intense short-pulse laser in plasma embedded with a magnetic Wiggler with a density transition. A plasma density ramp played an important role in the self-focusing, enhancing the third-harmonic generation in plasma. We also examined the effect of the Wiggler magnetic field on the pulse slippage of the third-harmonic pulse in plasma. The pulse slippage was due to the group-velocity mismatch between the fundamental and third-harmonic pulses.  相似文献   

11.
We experimentally study the effect of the air gap on conversion efficiency and the spectrum of generated third-harmonic pulses in the dual-tripler broadband third-harmonic generation scheme. The experimental results are in good agreement with predictions that the 4-cm air gap is equivalent to a full cycle of phase mismatch among the three interacting pulses (i.e. the fundamental, second-harmonic and third-harmonic pulse). The experimental results also show that the spectrum of the third-harmonic pulse is sensitive to the air gap. We also point out that the air gap effect can be ignored when the dual-tripler system is located in 1000 Pa atmosphere. These results will guide the design of the broadband third-harmonic generation system in high power lasers.  相似文献   

12.
We present results on supercontinuum generation extended up to 230 nm in air during the propagation of a powerful femtosecond laser pulse. The broad supercontinuum generated in air is contributed by self-phase modulation and self-steepening of the fundamental laser pulse, the third-harmonic pulse and their interaction. In particular, the strong interaction between the fundamental and the third-harmonic pulses leads to broad and efficient continuum generation of the third-harmonic pulse itself. The spectrum of the third-harmonic generated in air extends over several tens of nm and overlaps with the shorter wavelength extent of the fundamental continuum. PACS 42.65.Ky; 42.65.Jx; 52.35.Mw  相似文献   

13.
Cialdi S  Petrarca M  Vicario C 《Optics letters》2006,31(19):2885-2887
The generation of a high-power laser pulse at 266 nm that is longitudinally shaped according to a prefixed intensity profile is reported. The main features of the pulse shape modifications due to second- and third-harmonic conversions are measured, and the results are in good agreement with the theory. The UV temporal shape depends on the chirp of the fundamental pulse and on the crystal phase-matching angle. Exploiting the large stretching imposed on the third-harmonic signal, we show that the pulse intensity profile can be obtained by spectral single-shot measurements.  相似文献   

14.
Stoker DS  Keto JW  Baek J  Becker MF  Ma J 《Optics letters》2007,32(10):1265-1267
A method for measuring resonances using a combination of third-harmonic generation and frequency-domain interferometry is described and demonstrated in an index-matched dielectric material. The phase of the third-harmonic spectrum of a pulse generated from a resonant NdAlO(3) thin film and a temporally displaced sapphire substrate pulse was measured by analyzing the spectral interference pattern. The appropriate combination of substrate and film signals was obtained by translating the sample through the laser focus while observing the third-harmonic intensity.  相似文献   

15.
We observe the third-harmonic generation and second-harmonic generation together with element fluorescence from the interaction of a femtosecond laser filament with a rough surface sample(sandy soil) in non-phasematched directions. The harmonics prove to originate from the phase-matched surface harmonics and air filament, then scatter in non-phase-matched directions due to the rough surface. These harmonics occurr when the sample is in the region before and after the laser filament, where the laser intensity is not high enough to excite the element fluorescence. The observed harmonics are related to the element spectroscopy, which will benefit the understanding of the interaction of the laser filament with a solid and be helpful for the application on filament induced breakdown spectroscopy.  相似文献   

16.
We theoretically predict and experimentally demonstrate inhibition of linear absorption for phase and group velocity mismatched second- and third-harmonic generation in strongly absorbing materials, GaAs, in particular, at frequencies above the absorption edge. A 100-fs pump pulse tuned to 1300 nm generates 650 and 435 nm second- and third-harmonic pulses that propagate across a 450-microm-thick GaAs substrate without being absorbed. We attribute this to a phase-locking mechanism that causes the pump to trap the harmonics and to impress on them its dispersive properties.  相似文献   

17.
We experimentally demonstrate third-harmonic generation (THG) by intense femtosecond laser pulse at a central wavelength of ??800?nm superposed by its second harmonic in air. The third-harmonic signal shows a periodic modulation with a period of ??0.67?fs when the delay between fundamental and second-harmonic wave is continuously changed. The periodic modulation of THG can be attributed to the interference of third-harmonic signals generated from a direct THG channel (3??=??+??+??) and a four-wave mixing (FWM) channel (3??=2??+2?????). With high pump intensity, the fitting of the measured TH spectrum as a function of delay implies that the pump pulse undergoes a strong pulse splitting and self-phase modulation at the focus.  相似文献   

18.
A novel scheme to achieve broadband cascaded third-harmonic generation by use of two-dimensional quasi-phase-matching gratings is proposed. Intrinsic group-velocity mismatch is compensated by the pulse front tilt in noncollinear interaction geometry. The presented scheme enables broadband third-harmonic generation in a single device of long interaction length, which reduces the operation intensity dramatically.  相似文献   

19.
The first multimegawatt (4 MW, η=8%) harmonic (ω=sΩc, s=2,3) relativistic gyrotron traveling-wave tube (gyro-twt) amplifier experiment has been designed, built, and tested. Results from this experimental setup, including the first ever reported third-harmonic gyro-twt results, are presented. Operation frequency is 17.1 GHz. Detailed phase measurements are also presented. The electron beam source is SNOMAD-II, a solid-state nonlinear magnetic accelerator driver with nominal parameters of 400 kV and 350 A. The flat-top pulsewidth is 30 ns. The electron beam is focused using a Pierce geometry and then imparted with transverse momentum using a bifilar helical wiggler magnet. The imparted beam pitch is a α≡β≈1. Experimental operation involving both a second-harmonic interaction with the TE21 mode and a third-harmonic interaction with the TE 31 mode, both at 17 GHz, has been characterized. The third-harmonic interaction resulted in 4-MW output power and 50-dB single-pass gain, with an efficiency of up to ~8% (for 115-A beam current). The best measured phase stability of the TE31 amplified pulse was ±10° over a 9-ns period. The phase stability was limited because the maximum RF power was attained when operating far from wiggler resonance. The second harmonic, TE21 had a peak amplified power of 2 MW corresponding to 40 dB single-pass gain and 4% efficiency. The second-harmonic interaction showed stronger superradiant emission than the third-harmonic interaction. Characterizations of the second- and third-harmonic gyro-twt experiments presented here include measurement of far-field radiation patterns, gain and phase versus interaction length, phase stability, and output power versus input power  相似文献   

20.
The problem of the interaction of an ultrashort optical pulse and a thin film of resonant atoms under the conditions of two-photon absorption, third-harmonic generation, and the inverse effect of the latter on the pump pulse via Raman scattering is studied. The fact that the field acting on an atom differs from the macroscopic field in the film is also taken into consideration. It is shown that the polarization of the film undergoes dynamic relaxation even in the absence of irreversible relaxation, suppressing Rabi oscillations and establishing stationary values of the populations of the resonant energy levels and of the polarization of the film at the pump and the third-harmonic frequencies. Zh. éksp. Teor. Fiz. 115, 30–42 (January 1999)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号