首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
自行车发明于两个多世纪前. 这一看似古老的交通工具在为人们提供出行便利的同时,其独特的运动特性及动力学性质 也吸引了来自数学、物理及力学等多个学科相关学者的兴趣. 大体上,自行车可以描述为具有 7 个自由度和 4 个非完整约束的多刚体系统. 但由于前后车轮之间复杂的运动耦合关系,使得自行车的约束方程和动力学模型变得异常复杂, 导致对自行车的稳定性存在一些模糊认识. 本文针对经典的 Carvallo-Whipple 自行车构型,系统回顾了历史上自行车动力学研究中的相关问题,这些问题包括:(1) 自行车在复杂曲面上的几何约束和非完整约束的数学描述;(2) 自行车系统内在的对称性及守恒量; (3) 自行车动力学的各类建模方法; (4) 自行车运动的相对平衡点及稳定性分析,包括水平面上的匀速直线运动及旋转对称曲面上的匀速圆周运动;(5) 影响自行车自稳定性的结构参数等. 本文最后对自行车动力学实验和控制方面的研究工作进行了回顾,并对自行车今后的研究给出了展望.   相似文献   

2.
We present a novel analysis technique to understand the dynamics of a recently described locomotion mode called legless locomotion. Legless locomotion is a locomotion mode available to a legged robot when it becomes high-centered, that is, when its legs do not touch the ground. Under these conditions, the robot may still locomote in the plane by swinging its legs in the air, rocking on its body, and taking advantage of the nonholonomic contact constraints. Legless locomotion is unique from all previously studied locomotion modes, since it combines the effect of oscillations due to controls and gravity, nonholonomic contact constraints, and a configuration-dependent inertia. This complex interaction of phenomena makes dynamics analysis and motion planning difficult, and our proposed analysis technique simplifies the problem by decoupling the robot’s oscillatory rotational dynamics from its contact kinematics and also decoupling the dynamics along each axis. We show that the decoupled dynamics models are significantly simpler, provide a good approximation of the motion, and offer insight into the robot’s dynamics. Finally, we show how the decoupled models help in motion planning for legless locomotion.  相似文献   

3.
This paper deals with the forward and the inverse dynamic problems of mechanical systems subjected to nonholonomic constraints. The intrinsically dual nature of these two problems is identified and utilised to develop a systematic approach to formulate and solve them according to an unified framework. The proposed methodology is based on the fundamental equations of constrained motion which derive from Gauss’s principle of least constraint. The main advantage arising from using the fundamental equations of constrained motion is that they represent an effective method capable to derive the generalised acceleration of a mechanical system, constrained in general by a set of nonholonomic constraints, together with the generalized constraint forces (forward dynamics). When the constraint equations are used to represent the desired behaviour of the mechanical system under study, the generalised constraint forces deriving from the fundamental equations of constrained motion provide the control actions which reproduce the specified motion for the system (inverse dynamics). This approach is systematically extended to underactuated mechanical systems introducing a new method named underactuation equivalence principle. The underactuation equivalence principle is founded on the key idea that the underactuation property of a mechanical system can be mathematically represented using a particular set of nonholonomic constraint equations. Two simple case-studies are reported to exemplify the proposed methodology. In the first case-study the computation of the generalised constraint forces relative to the revolute joint constraints of a physical pendulum is illustrated. In the second case-study the calculation of the control action which solves the swing-up problem for an inverted pendulum is described.  相似文献   

4.
傅景礼  陆晓丹  项春 《力学学报》2022,54(6):1680-1693
爬壁机器人的运动是一种模仿壁虎爬行的运动, 爬壁机器人的运动可分解为四肢带动身体的运动, 先前的研究都是基于牛顿力学的方法. 本文采用Lagrange 力学的方法建立爬壁机器人系统的运动方程, 并运用Lie群分析方法建立该系统的Noether对称性理论, 得出爬壁机器人的运动规律. 首先, 给出非完整爬壁机器人系统的动能、势能和Lagrange函数以及所受的非完整约束, 从而建立了非完整爬壁机器人系统的Lagrange方程; 其次, 引入关于时间和广义坐标的无限小变换, 提出了非完整爬壁机器人系统的Hamilton作用量和Hamilton作用量的基本变分公式; 第三, 给出爬壁机器人系统 Noether对称性变换和广义准对称变换的定义, 判据和存在的Noether守恒量, 并提出了非保守完整系统和非保守非完整爬壁机器人系统的Noether定理; 最后, 以圆锥面上爬壁机器人为例, 对给出的守恒量直接进行积分给出圆锥面上爬壁机器人整体运动的精确解和四肢运动的数值解, 发现了该爬壁机器人的运动规律, 很好地验证了非完整爬壁机器人系统的Noether对称性理论. 本文的研究为Lie群分析方法应用于其他复杂的机器人系统以及柔性机器人系统的对称性求解提出了一种新的对称性求解方法.   相似文献   

5.
Control of the autonomous bicycle robot offers considerable challenges to the field of robotics due to its nonholonomic, underactuated, and nonminimum-phase properties. Furthermore, instability and complex dynamic coupling make the trajectory planning of the bicycle robot even more challenging. In this paper, we consider both trajectory planning and tracking control of the autonomous bicycle robot. The desired motion trajectory of the contact point of the bicycle’s rear wheel is constructed using the parameterized polynomial curve that can connect two given endpoints with associated tangent angles. The parameters of the polynomial curve are determined by minimizing the maximum of the desired roll angle’s equilibrium of the bicycle, and this optimization problem is solved by the particle swarm optimization algorithm. Then, a control scheme that can achieve full-state trajectory tracking while maintaining the bicycle’s balance is proposed by combining a planar trajectory tracking controller with a roll angle balance controller. Simulation results are presented to demonstrate the effectiveness of the proposed method.  相似文献   

6.
非完整约束系统几何动力学研究进展:Lagrange理论及其它   总被引:1,自引:1,他引:0  
近10年来, 非完整力学的发展主要集中在两个相互关联的方向上, 一个是非完整运动规划, 另一个则是非完整约束系统的几何动力学, 这两个研究方向都充分地利用了现代几何学, 如纤维丛理论、辛流形和Poisson流形结构等等.本文主要综述非完整约束系统几何动力学的外附型和内禀型Lagrange理论, 包括非定常力学系统所需要的射丛几何学的基本概念、射丛按约束的直和分解、约束流形上的水平分布、D'Alembert-Lagrange方程与Chaplygin方程的整体描述、以及Riemann-Cartan流形上的非完整力学, 文中对Chetaev条件和d-δ交换关系的几何意义作了深入讨论.除此之外, 简要评述非完整力学的Hamilton理论与赝Poisson结构、Noether对称性和Lie对称性、动量映射与对称约化、Vakonomic动力学等几个非常重要专题的研究进展.   相似文献   

7.
Optimizing the dynamic response of mechanical systems is often a necessary step during the early stages of product development cycle. This is a complex problem that requires to carry out the sensitivity analysis of the system dynamics equations if gradient-based optimization tools are used. These dynamics equations are often expressed as a highly nonlinear system of ordinary differential equations or differential-algebraic equations, if a dependent set of generalized coordinates with its corresponding kinematic constraints is used to describe the motion. Two main techniques are currently available to perform the sensitivity analysis of a multibody system, namely the direct differentiation and the adjoint variable methods. In this paper, we derive the equations that correspond to the direct sensitivity analysis of the index-3 augmented Lagrangian formulation with velocity and acceleration projections. Mechanical systems with both holonomic and nonholonomic constraints are considered. The evaluation of the system sensitivities requires the solution of a tangent linear model that corresponds to the Newton–Raphson iterative solution of the dynamics at configuration level, plus two additional nonlinear systems of equations for the velocity and acceleration projections. The method was validated in the sensitivity analysis of a set of examples, including a five-bar linkage with spring elements, which had been used in the literature as benchmark problem for similar multibody dynamics formulations, a point-mass system subjected to nonholonomic constraints, and a full-scale vehicle model.  相似文献   

8.
戈新生 《力学季刊》1999,20(2):173-177
本文讨论轮式动机器人非完整运动的最优规划问题,利用约束与最优控制理论建立数学模型,考虑系统的非完整约束特性,提出轮式移动机器人运动规划的最优控制算法。通过数值仿真,表明该方法的有效性。  相似文献   

9.
An efficient (simplified) method for solving problems of spherically symmetric dynamics of a small gas bubble in a compressible fluid is proposed. The method is based on the joint use of the full problem statement (the gas dynamics equations for the gas and the fluid) and its relevant simplifications. Some approximate statements are discussed. In the proposed method, the rarefaction and compression of the gas during the slow motion of the bubble surface is assumed to be uniform over the bubble volume. At the same time the fluid in the thin zone adjacent to the bubble is considered to be slightly compressible. Otherwise the gas dynamics equations are used for the gas and the fluid. The dynamics of the fluid in the thick external zone are described by the linear acoustics only. The proposed simplified method and two others used in literature are estimated by comparison of their numerical results with those obtained in full statement. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
研究了自由漂浮带滑移铰空间机器人非完整运动规划的最优控制问题,提出一种由高斯伪谱法求解可行解与直接打靶法求解最优解相结合的混合优化策略.首先,根据多体系统动力学理论建立空间机器人的动力学模型,给定系统的初始和目标位形,将空间机器人运动规划问题描述成博尔察(Bolza)型最优控制问题;然后,利用高斯伪谱法将最优控制问题离散为非线性规划问题,求解在较少勒让德-高斯(Legendre-Gauss,LG)点时状态变量和控制变量对应的可行解;最后,在LG点处离散控制变量,作为直接打靶法的初值,利用序列二次规划算法求解空间机器人系统的优化运动轨迹和最优控制输入.通过数值仿真,系统优化运动轨迹光滑平稳,最优控制输入也能很好地满足各种约束条件,仿真结果验证了该混合优化策略的鲁棒性和有效性.  相似文献   

11.
Two constraint violation stabilization methods are presented to solve the Euler Lagrange equations of motion of a multibody system with nonholonomic constraints. Compared to the previous works, the newly devised methods can deal with more complicated problems such as those with nonholonomic constraints or redundant constraints, and save the computation time. Finally a numerical simulation of a multibody system is conducted by using the methods given in this paper.  相似文献   

12.
1.IntroductionMoreandmoreattentionhasbeenpaidtothestudyofdynamicsofcomplicatedsystemwiththedevelopmentofmodernscienceandtechnology.Thestudyoftherelativemotionofvariablemasssystembyusingthetheoryandmethodofanalyticalmechanicsnotonlycanunifytheexpressionformbutalsocandisplayitssuperioritytothecomplicatedsystem.In1961,thedynamicsofrelativemotionofholonomicsystemwasderivedbyLur'ell].Inrecehtyears,LiulZIandLuol3'4]havegiventhedynamicsequationsofrelativemotionofvariablemassnonholonomicsystem.Howe…  相似文献   

13.
赵金刚  戈新生 《力学季刊》2016,37(2):225-233
通过自适应动态规划研究自由漂浮空间双臂机器人运动的最优控制问题.针对空间双臂机器人的非完整性运动,采用自适应动态规划(Adaptive Dynamic Programming, ADP)方法求解其最优控制问题.根据多体动力学理论,推导了载体位置、姿态均无控制条件下,双臂空间机器人满足的系统动量守恒关系的非完整约束方程,并将其转化为控制系统的状态方程,从而将双臂空间机器人的非完整运动规划问题转化为对非线性系统的控制问题.文中根据自适应动态规划网络结构,利用神经网络来近似性能指标函数,进而用龙格库塔法求解状态变量.并给出了适合该类问题的一种效用函数具体表达式,保证了空间双臂机器人到达期望位置后不再继续运动.实现了对空间双臂机器人非完整运动规划的最优控制.数值仿真实验验证了ADP对求解空间双臂机器人非完整运动规划最优控制问题的有效性.  相似文献   

14.
The main purpose of this paper is to present a unified analytical dynamics framework for the analysis of finite and impulsive motion of mechanical systems using Jourdain's principle. Emphasis is given to the general case when a mechanical system is described by a hybrid (discrete-distributed) parameter model. A large group of finite and impulsive, generally non-holonomic, constraints are analysed in detail and a so-called extended Appellian classification is presented for these constrained motion problems. The fundamental dynamic equation of constrained systems is developed in terms of velocity variations (Jourdain's principle). Based on this equation and the constraints, the methods of quasivelocities and Lagrangian multipliers are adopted and interpreted for the finite motion of hybrid parameter models of mechanical systems; and the methods of independent quasivelocity variations and Lagrangian multipliers are introduced for the analysis of impulsive motion of such models. To illustrate the proposed material, an example of a one-link flexible arm intercepting and capturing a moving target is considered.  相似文献   

15.
研究带有非完整约束的一类多体系统运动规划问题。多体系统中的非完整约束通常是由不可积的速度约束或不可积的守恒律引起。在系统动量和动量矩守恒情况下,动力学方程降阶为非完整形式约束方程,系统的控制问题可转化为无漂移系统的非完整运动规划问题。文中首先导出具有多体开链系统的非完整运动模型。利用最优控制理论和最优化技术,采用输入参数化的方法将连续的最优控制问题转化为离散的最优控制问题,提出一种非完整多体系统运动规划的拟牛顿算法。最后将该方法用于自由漂浮的空间三连杆机构,仿真结果验证了该方法的有效性。  相似文献   

16.
具有单面非线性非完整约束的动力学系统的运动   总被引:1,自引:0,他引:1  
张毅  吴润衡 《力学季刊》1999,20(2):196-200
本文提出并研究了具有单面非线性非完整约束的动力学系统的运动问题,给出了描述系统运动的Boltzmann-Hamel型方程,并举例说明结果的应用。  相似文献   

17.
The paper proposes computer algebra system (CAS) algorithms for computer-assisted derivation of the equations of motion for systems of rigid bodies with holonomic and nonholonomic constraints that are linear with respect to the generalized velocities. The main advantages of using the D’Alembert-Lagrange principle for the CSA-based derivation of the equations of motion for nonholonomic systems of rigid bodies are demonstrated. Among them are universality, algorithmizability, computational efficiency, and simplicity of deriving equations for holonomic and nonholonomic systems in terms of generalized coordinates or pseudo-velocities __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 9, pp. 106–115, September 2006.  相似文献   

18.
A large proportion of constrained mechanical systems result in nonlinear ordinary differential equations, for which it is quite difficult to find analytical solutions. The initial motions method proposed by Whittaker is effective to deal with such problems for various constrained mechanical systems, including the nonholonomic systems discussed in the first part of this paper, where in addition to differential equations of motion, nonholonomic constraints apply. The final equations of motion for these systems are obtained in the form of corresponding power series. Also, an alternative, direct method to determine the initial values of higher-order derivatives \({\ddot{q}}_0 ,{{\dddot{q}{} }}_{\!0} ,\ldots \) is proposed, being different from that of Whittaker. The second part of this work analyzes the stability of equilibrium of less complex, nonholonomic mechanical systems represented by gradient systems. We discuss the stability of equilibrium of such systems based on the properties of the gradient system. The advantage of this novel method is its avoidance of the difficulty of directly establishing Lyapunov functions aimed at such unsteady nonlinear systems. Finally, these theoretical considerations are illustrated through four examples.  相似文献   

19.
The motion of a rolling ball actuated by internal point masses that move inside the ball’s frame of reference is considered. The equations of motion are derived by applying Euler–Poincaré’s symmetry reduction method in concert with Lagrange–d’Alembert’s principle, which accounts for the presence of the nonholonomic rolling constraint. As a particular example, we consider the case when the masses move along internal rails, or trajectories, of arbitrary shape and fixed within the ball’s frame of reference. Our system of equations can treat most possible methods of actuating the rolling ball with internal moving masses encountered in the literature, such as circular motion of the masses mimicking swinging pendula or straight line motion of the masses mimicking magnets sliding inside linear tubes embedded within a solenoid. Moreover, our method can model arbitrary rail shapes and an arbitrary number of rails such as several ellipses and/or figure eights, which may be important for future designs of rolling ball robots. For further analytical study, we also reduce the system to a single differential equation when the motion is planar, that is, considering the motion of the rolling disk actuated by internal point masses, in which case we show that the results obtained from the variational derivation coincide with those obtained from Newton’s second law. Finally, the equations of motion are solved numerically, illustrating a wealth of complex behaviors exhibited by the system’s dynamics. Our results are relevant to the dynamics of nonholonomic systems containing internal degrees of freedom and to further studies of control of such systems actuated by internal masses.  相似文献   

20.
I.IntroductionTheinverseproblemofdynamicsisoneoftheimportantsubjectsinmechanics.In1977,Szebehelysetforthaninverseproblemforthedeterminationofthet'orcefunctiontoamaterialpointintheplanefromparametricfamilyoftrajectories,andobtainedalinearfirstorderpartialdifferentialequationfortheforcefunction.Later,Erdil'l,MellsandPirast=l,MellsandBorgherol'l,BoilsandMertnsl4]extendedSzebehely'sproblemtoboththreeandndimensionalholonomicsystem.Recently,theauthorandProfessorMetFengxiangl'1studiedtheSzebehe…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号