首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
This paper presents a novel surface engineering approach that combines photochemical grafting and surface-initiated atom transfer radical polymerization (SI-ATRP) to attach zwitterionic polymer brushes onto indium tin oxide (ITO) substrates. The photochemically grafted hydroxyl-terminated organic layer serves as an excellent platform for initiator attachment, and the zwitterionic polymer generated via subsequent SI-ATRP exhibits very good antifouling properties. Patterned polymer coatings can be obtained when the surface with covalently attached initiator was subjected to photomasked UV-irradiation, in which the C-Br bond that is present in the initiator was broken upon exposure to UV light. A further, highly versatile top-functionalization of the zwitterionic polymer brush was achieved by a strain-promoted alkyne-azide cycloaddition, without compromising its antifouling property. The attached bioligand (here: biotin) enables the specific immobilization of target proteins in a spatially confined fashion, pointing to future applications of this approach in the design of micropatterned sensing platforms on ITO substrates.  相似文献   

2.
An alkali-soluble random copolymer (ASR), poly(styrene/α-methylstyrene/acrylic acid), was used as a polymeric emulsifier in the emulsion polymerization of styrene. The calorimetric technique was applied to study the kinetics of emulsion polymerization of styrene using ASR and a conventional ionic emulsifier, sodium dodecyl benzenesulfonate (SDBS). ASR could form aggregates like micelles, and the solubilization ability of the aggregates was dependent on the neutralization degree of ASR. The rate of polymerization in the ASR system was lower than that in the SDBS system. This result can be explained by the creation of a hairy ASR layer around the particle surface, which decreases the diffusion rate of free radicals through this region. Although a decrease in particle size was observed, the rate of polymerization decreased with increasing ASR concentration. The higher the concentration of ASR is, the thicker and denser ASR layer may be, and the more difficult it would therefore be for radicals to reach the particle through this layer of ASR. The rate of polymerization decreased with increasing the neutralization degree of ASR. The aggregates with high neutralization of ASR are less efficient in solubilizing the monomer and capturing initiator radicals than that of the lower neutralization degree, which leads to decrease in rate of polymerization. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2865–2872, 1998  相似文献   

3.
The free‐radical polymerization of styrene initiated from a functionalized poly(ethylene terephthalate) (PET) surface yielded a tethered polymer layer. The anchoring of the initiator species on the PET surface was performed from surface‐reactive groups easily generated by an alkaline hydrolysis of PET. After each surface modification, PET films were characterized by X‐ray photoelectron spectroscopy, measurements of water contact angles, and time‐of‐flight secondary‐ion mass spectrometry. The influence of the polymerization duration, the grafted initiator density, and the grafting mode on the efficiency of the surface‐initiated polymerization of styrene was investigated. In some cases, the tethering of the polystyrene layer on PET could be a reversible process. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1347–1359, 2003  相似文献   

4.
Biointegration of titanium implants in the body is controlled by their surface properties. Improving surface properties by coating with a bioactive polymer is a promising approach to improve the biological performance of titanium implants. To optimize the grafting processes, it is important to fully understand the composition and structure of the modified surfaces. The main focus of this study is to provide a detailed, multitechnique characterization of a bioactive poly(sodium styrene sulfonate) (pNaSS) thin film grafted from titanium surfaces via a two-step procedure. Thin titanium films (~50 nm thick with an average surface roughness of 0.9 ± 0.2 nm) prepared by evaporation onto silicon wafers were used as smooth model substrates. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) showed that the titanium film was covered with a TiO(2) layer that was at least 10 nm thick and contained hydroxyl groups present at the outermost surface. These hydroxyl groups were first modified with a 3-methacryloxypropyltrimethoxysilane (MPS) cross-linker. XPS and ToF-SIMS showed that a monolayer of the MPS molecules was successfully attached onto the titanium surfaces. The pNaSS film was grafted from the MPS-modified titanium through atom transfer radical polymerization. Again, XPS and ToF-SIMS were used to verify that the pNaSS molecules were successfully grafted onto the modified surfaces. Atomic force microscopy analysis showed that the film was smooth and uniformly covered the surface. Fourier transform infrared spectroscopy indicated that an ordered array of grafted NaSS molecules were present on the titanium surfaces. Sum frequency generation vibration spectroscopy and near edge X-ray absorption fine structure spectroscopy illustrated that the NaSS molecules were grafted onto the titanium surface with a substantial degree of orientational order in the styrene rings.  相似文献   

5.
Living anionic surface‐initiated polymerization on flat gold substrates has been conducted to create uniform homopolymer and diblock copolymer brushes. A 1,1‐diphenylethylene (DPE) self‐assembled monolayer was used as the immobilized precursor initiator. n‐BuLi was used to activate the DPE in tetrahydrofuran at –78 °C to initiate the polymerization of different monomers (styrene, isoprene, ethylene oxide, and methyl methacrylate). Poly(styrene) (PS) and poly(ethylene oxide) (PEO) in particular were first investigated as grafted homopolymers, followed by their copolymers, including poly(isoprene)‐b‐poly(methylmethacrylate) (PI‐b‐PMMA). A combined approach of spectroscopic (Fourier transform infrared spectroscopy, surface plasmon spectroscopy, ellipsometry, X‐ray photoelectron spectroscopy) and microscopic (atomic force microscopy) surface analysis was used to investigate the formation of the polymer brushes in polar solvent media. The chemical nature of the outermost layer of these brushes was studied by water contact angle measurements. The effect of the experimental conditions (solvent, temperature, initiator concentration) on the surface properties of the polymer brushes was also investigated. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 769–782, 2006  相似文献   

6.
The Mettler RC1 calorimeter was used to measure the rate of polymerization of conventional emulsion, homogenized emulsion, and miniemulsion polymerizations of styrene initiated with 2,2′-azobis(2-methylbutyronitrile). It was noted that the rate of polymerization significantly increased as the surface area of the monomer droplets increased. This was taken as strong evidence that in the miniemulsion and homogenized emulsion polymerizations, the fraction of the initiator soluble in the oil phase was responsible for single radical generation. The partitioning of AMBN at 70 °C was measured by high-pressure liquid chromatography to be 134 parts in the oil : 1 part in the water. Predissolving polystyrene in the miniemulsion prior to homogenization resulted in an enhancement in the rate of polymerization, although to a lesser extent than what has been previously noted for parallel miniemulsion polymerizations initiated with potassium persulfate. It was also noted that the method of addition of the oil-soluble initiator (either predissolved in the monomer prior to homogenization or dissolved in a small separate phase of monomer and added directly to the reactor) has a measurable effect on the kinetics in the miniemulsion polymerization of styrene. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4449–4457, 1999  相似文献   

7.
Polymerization rate and molecular weight development experimental results for the emulsion polymerization of methyl methacrylate (MMA), in the presence of potassium persulphate (PPS) as initiator, and activated with a 50 W microwave source, are reported. The polymerization kinetics of the microwave activation experiment (MA) was compared against a traditional conductive heating (CH) polymerization reaction. The number average molecular weights, Mn, of the polymer samples obtained with microwave activation were significantly higher than those obtained from conductive heating. These high values of Mn were obtained from the beginning of the polymerization reaction. Polydispersity index (PDI) values in the range of 1.18 to 1.83 were obtained in the microwave irradiated samples. These values are lower than those produced by conventional emulsion polymerization of styrene and other vinyl monomers, and resemble the PDI values obtained in controlled‐radical polymerization processes. Polymer particles of submicron size (60 to 100 nm) were obtained.  相似文献   

8.
An oxoaminium chloride that is prepared by reacting 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO) with chlorine in carbon tetrachloride initiates radical polymerization of styrene at 120°C. In the early stages of polymerization, a monomeric adduct, 2,2,6,6-tetramethyl-1-(2-chloro-1-phenylethoxy)piperidine, is formed. Thereafter, styrene polymerization exhibiting the characteristics of living polymerization proceeds. High molecular weight polymers with relatively narrow molecular weight distributions are obtained by this polymerization. 1H-NMR spectra of the polymers reveal that a chlorine atom and a TEMPO group are present at the α- and ω-termini, respectively. The monomeric adduct was prepared by heating the oxoaminium chloride and styrene in carbon tetrachloride at 65–70°C, and was characterized by 1H- and 13C-NMR spectroscopy. It was found to be suitable as an initiator for nitroxide-mediated radical polymerization of styrene to make polymers with chlorine on the chain end. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2555–2561, 1998  相似文献   

9.
A comparative study of radical polymerization of styrene under thermal and microwave heating conditions has been carried out. The polymerization reaction orders with respect to the monomer and initiator concentrations and the polymerization rate constants have been determined. It has been found that non-thermal microwave effects are not manifested during styrene polymerization, because styrene is a weakly polar substance.  相似文献   

10.
《先进技术聚合物》2018,29(2):825-834
In this study, poly(acrylonitrile‐co‐styrene/pyrrole) or poly(AN‐co‐ST/Py) copolymer was successfully synthesized using microwave preparation technique, and its comparison with the conventional heating method is investigated. Different polymerization factors affecting on the preparation conditions and conversion yield such as monomer concentration, comonomers ratio, initiator concentration, cosolvent ratio, cosolvent type, polymerization temperature, and polymerization time have a considerable effect on the conversion yield %, functional groups, and molecular weight. The copolymerization process was approved by Fourier transform infrared, thermogravimetric analysis, 1H NMR spectroscopy, and gel permeation chromatography. The formation of poly(AN‐co‐ST/Py) nanoparticles was confirmed by SEM, and their possible formation mechanisms were also proposed. The SEM images of poly(AN‐co‐ST/Py) prepared by the microwave method showed that the synthesized copolymer had spikes or rods with spherical structure of the produced copolymers than the poly(AN‐co‐ST/Py) nanoparticles prepared by the conventional heating method. Microwave method showed advantages for the produced copolymers compared to that prepared by conventional method, where it can offer a copolymer in short time, high yield, and more thermally stable copolymers, rather than conventional method.  相似文献   

11.
Two different in situ-polymerization techniques were studied, emulsion polymerization and combined emulsion/suspension polymerization, with styrene and methyl methacrylate in the presence of different multiwalled carbon nanotubes (MWCNTs). Molar masses and molar mass distributions were determined by size exclusion chromatography, and particle size of the emulsions by dynamic light scattering and rotation rheometry. The compatibility of the MWCNTs and monomer affected polymerization and therefore the molar masses. The MWCNTs stabilized the emulsions, and molar mass distributions narrowed with higher amounts of MWCNTs. In emulsion polymerization of styrene, MWCNTs increased the molar mass. The increase of molar mass was based on the compatible molecular structures of MWCNTs and styrene, so that individual nanotubes were covered by monomer clouds when initiator arrived. In combined emulsion/suspension polymerization of styrene, MWCNTs reacted with the initiator and there was less initiator to polymerize the monomer. There is probably a critical surface area of MWCNTs, for which more initiator is consumed in the reaction with MWCNTs than in polymerization of the monomer. In emulsion polymerization of MMA, monomer clouds around MWCNTs do not form due to incompatible molecular structures, and nanotubes do not enhance polymerization of MMA. In combined polymerization, the initiator is reacting with the nanotubes and the tube is acting as a carrier for initiator, and molar masses are higher.  相似文献   

12.
The emulsifier-free emulsion polymerizations of styrene in the presence of about 1 wt% (related to styrene) of the water soluble comonomer, sodium methallyl sulfonate (NaMS), which has short hydrophobic group and strong hydrophilic ionic group, and of the initiator, potassium persulfate, are carried out. Under constant ionic strength, the number density of polymer particles (Np) is found to depend on 0.5-power of the initiator concentration and shows a minimum in the comonomer concentration plot. Under constant concentration of monomer, comonomer and initiator, Np is found to depend on ?1.1-power of the ionic strength. In the earlier period, the presence of styrene oligomer having MW about 1000 and water soluble poly(NaMS) or copolymer with high NaMS content suggests a micellar nucleation mechanism, by which the styrene oligomer behaves as emulsifier and the poly(NaMS) can either stabilize or destabilize the existing particles, depending on its concentration in the aqueous phase. The particle size is rather uniform having an uniformity very close to 1 (ca. 1.001) throughout the entire process. It is much larger than that of the conventional emulsion polymerization or emulsifier-free emulsion polymerization with the other comonomers by about 3 to 4 times in diameter or 27 to 64 times in volume, leading to that the average radical number in the particle could be much greater than 0.5. The (conversion)2/3 versus time plot is found to be linear from 6 to 50% conversion. During this period, for the conversion from 10 to 40% the polymerization rate increases twice but the particle volume increases four-fold. In addition, MWD shows bimodal (excluding the styrene oligomer peak in the earlier period) during the growth period. But the lower MW peak shifts to higher MW and become larger, while the higher MW peak decreases, and finally the MWD becomes single mode after 58.6% conversion. These results suggest a “gradient polymerization” or “transition stage to core-shell structure” in the earlier stage of particle growth and a “shell part polymerization” in the later stage.  相似文献   

13.
RAFT聚合合成高分子量嵌段聚合物   总被引:1,自引:0,他引:1  
以合成高分子量聚合物为目标,以苯基二硫代乙酸-1-苯基乙酯(PEPDTA)作为RAFT试剂,研究引发剂的种类(偶氮二异丁腈(AIBN)、1-1′-偶氮环己腈(ACC))、用量及聚合温度对苯乙烯/丙烯酸丁酯RAFT共聚合过程和聚合物结构的影响.结果发现,由于体系中RAFT浓度很低,相应的引发剂浓度要比传统自由基聚合低得多,只有采用较高的聚合温度和低分解速率常数的引发剂(ACC),才能制得无活性聚合物分率低(<0.1)、分子量高的聚合物,并进一步得到杂质含量少、分子量分布窄的嵌段聚合物.  相似文献   

14.
Covalently‐colored polymer latex was synthesized via batch emulsion copolymerization of styrene, butyl acrylate and methacrylic acid in the presence of red polymerizable dye monomer consisting of anthraquinone chromophore, alkyl spacer and acryloyl group, and the influences of the initiator, surfactant and polymerizable dye on the polymerization and the latex properties were investigated. Results showed that the initiator amount was a determinative factor for the monomer conversion, and a high conversion of the polymerizable dye could be achieved when the ammonium persulfate amount was equal to or more than 1 wt% to the total monomers. Most of the chromophores were covalently bonded to the polymer chains if the polymerizable dye was used in the range of 0–1.5 wt%. The light fastness of the resulting latex film was much better than that of the noncovalently‐colored polymer film.  相似文献   

15.
Fast 8-MeV electrons were used for the heating and dry distillation of hydrolytic lignin. The resulting tar differed in composition from that of the conventional dry distillation and was composed primarily of methoxyphenols. Guaiacol and creosol were the prevalent components in the fraction with the boiling range 80–235°C. It was shown that the tar effectively inhibits the thermal polymerization of styrene, with the inhibiting activity being higher than that of the commercial inhibitors Agidol 1 and Agidol 2. In the presence of 0.025 wt % tar, the induction period of the thermal polymerization of styrene at 120°C was at least 120 min.  相似文献   

16.
Cationic polystyrene (PS) microspheres with monodispersity were prepared by dispersion polymerization of styrene and [2-(methacyrloyloxy) ethyl] trimethylammonium chloride (METMAC) in methanol/water system. The effects of METMAC, styrene, and initiator concentration as well as solvent composition on the diameters and size distribution of PS microspheres were systematically investigated. The results indicated that monodisperse cationic PS microspheres could be generated at METMAC concentration less than 2 mol% relative to styrene amount, and too high or low styrene amount was unfavorable to produce cationic PS microspheres. Moreover, it was found that with initiator concentration increasing, the average diameter and the size distribution of cationic PS microspheres also markedly increased. Solvent composition played a significantly important role in the preparation of cationic PS microspheres by dispersion polymerization of styrene and METMAC. Finally, the possible growth and stabilization mechanism of cationic PS microspheres was proposed. The electrostatic repulsion derived from positive charge on the surface of PS microspheres was responsible for the stabilization during dispersion polymerization in the absence of a stabilizer.  相似文献   

17.
Titanium is widely used in biomedical applications. Its mechanical properties and biocompatibility, conferred by a layer of oxide present on its surface, make titanium the material of choice for various implants (artificial hip and knee joints, dental prosthetics, vascular stents, heart valves). Furthermore, the high refractive index of titanium oxide is advantageous in biosensor applications based on optical detection methods. In both of the above fields of application, novel surface modification strategies leading to biointeractive interfaces (that trigger specific responses in biological systems) are continuously sought. In this report, we investigate the interactions between TiO2 and phosphatidyl serine-containing liposomes, present a novel approach for preparing supported phospholipid bilayers (SPBs) of various compositions on TiO2, and use the unique ability of liposomes to distinguish between different surfaces to create SPB corrals on SiO2/TiO2 structured substrates. These results represent an important first step toward the design of biointeractive interfaces on titanium oxide surfaces that are based on a cell membrane-like environment.  相似文献   

18.
β二酮钛配合物/MAO催化合成间规聚苯乙烯及其热性能   总被引:5,自引:0,他引:5  
间规聚合;β二酮钛配合物/MAO催化合成间规聚苯乙烯及其热性能  相似文献   

19.
Summary: Emulsion polymerization reactions were performed under microwave irradiation and conventional heating using anionic or cationic initiators and surfactants. Microwave irradiation promoted higher reaction rates for both initiators and surfactants, in comparison with the conventional heating. The effect of high power microwave irradiation was studied using a method of cycles of heating and cooling, where rapid polymerization reactions were obtained. In the reactions with anionic initiator and surfactant, a decrease in the particle diameters was observed with microwave heating, and even smaller particles were obtained using high power microwave irradiation. Moreover, the decrease in the particle size was acompanied by an increase in the polymer molecular weight. On the other hand, these effects were not observed for reactions with cationic initiator and surfactant.  相似文献   

20.
The soap-free emulsion polymerizations of styrene (St) and acrylamide (AAm) or methyl methacrylate (MMA) were carried out in the presence of three kinds of amphoteric initiators, and the polymerization kinetics and the colloidal properties of the latices produced were emphatically investigated. It was found that the number of carbon atoms between the amidino and carboxyl groups in each initiator exhibited an appreciable effect on the dissociation as well as on the solubility of the initiator in water, and therefore, that the properties of the colloidal particles depended on the structure of the initiators used. All the copolymerization runs, except for the polymerization using 2,2′-azobis(N-(2-caboxyethyl)-2-methylpropionamidine) under a strongly alkali condition, gave amphoteric latices, which indicated higher critical flocculation concentrations at lower or higher pHs than at a medium pH. The surface charge density measured by titration for poly(St/MMA) particles was about 3–10 times as high as that for the poly(St/AAm) ones, though these were prepared under the same conditions other than the monomer composition. The influence of the polymerization pH on both the polymerization rate and the surface charge density of the resulting latices was negligible even if the constants of the decomposition rate and the dissociation of the amphoteric initiators strongly depended on the pH of the medium. Received: 28 July 2000 Accepted: 1 November 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号