首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 926 毫秒
1.
Three-dimensional network structures of [Ru(II/III)(2)(O(2)CMe)(4)](3)[M(III)(CN)(6)] (M = Cr, Fe, Co) composition have been formed and their magnetic properties characterized. [Ru(II/III)(2)(O(2)CMe)(4)](3)[M(III)(CN)(6)] (M = Cr, Fe, Co) have nu(CN) IR absorptions at 2138, 2116, and 2125 cm(-1) and have body-centered unit cells (a = 13.34, 13.30, and 13.10 A, respectively) with -M-Ctbd1;N-Ru=Ru-Ntbd1;C-M- linkages along all three Cartesian axes. [Ru(II/III)(2)(O(2)CMe)(4)](3)[Cr(III)(CN)(6)] magnetically orders as a ferrimagnet (T(c) = 33 K) and has an unusual constricted hysteresis loop.  相似文献   

2.
In aqueous solutions under mild conditions, [Ru(H(2)O)(6)](2+) was reacted with various water-soluble tertiary phosphines. As determined by multinuclear NMR spectroscopy, reactions with the sulfonated arylphosphines L =mtppms, ptppms and mtppts yielded only the mono- and bisphosphine complexes, [Ru(H(2)O)(5)L](2+), cis-[Ru(H(2)O)(4)L(2)](2+), and trans-[Ru(H(2)O)(4)L(2)](2+) even in a high ligand excess. With the small aliphatic phosphine L = 1,3,5-triaza-7-phosphatricyclo-[3.3.1.1(3,7)]decane (pta) at [L]:[Ru]= 12:1, the tris- and tetrakisphosphino species, [Ru(H(2)O)(3)(pta)(3)](2+), [Ru(H(2)O)(2)(pta)(4)](2+), [Ru(H(2)O)(OH)(pta)(4)](+), and [Ru(OH)(2)(pta)(4)] were also detected, albeit in minor quantities. These results have significance for the in situ preparation of Ru(II)-tertiary phosphine catalysts. The structures of the complexes trans-[Ru(H(2)O)(4)(ptaMe)(2)](tos)(4)x2H(2)O, trans-[Ru(H(2)O)(4)(ptaH)(2)](tos)(4)[middle dot]2H(2)O, and trans-mer-[RuI(2)(H(2)O)(ptaMe)(3)]I(3)x2H(2)O, containing protonated or methylated pta ligands (ptaH and ptaMe, respectively) were determined by single crystal X-ray diffraction.  相似文献   

3.
The photophysical properties of acetonitrile solutions of [Ru(bpy)(3)](2+) and [S(2)Mo(18)O(62)](4-) are described. We discuss evidence for ion cluster formation in solution and the observation that despite the strong donor ability of the excited state of [Ru(bpy)(3)](2+) and its inherent photolability, adducts with [S(2)Mo(18)O(62)](4-) were photostable. Photophysical studies suggest that the quenching of the [Ru(bpy)(3)](2+) excited state by [S(2)Mo(18)O(62)](4-) occurs via a static mechanism and that binding is largely electrostatic in nature. Evidence is provided from difference spectroscopy and luminescence excitation spectroscopy for good electronic communication between [Ru(bpy)(3)](2+) and [S(2)Mo(18)O(62)](4-) with the presence of a novel, luminescent, inter-ion charge-transfer transition. The identity of the transition is confirmed by resonance Raman spectroscopy.  相似文献   

4.
The reactions of bidentate diimine ligands (L2) with cationic bis(diimine)[Ru(L)(L1)(CO)Cl]+ complexes (L, L1, L2 are dissimilar diimine ligands), in the presence of trimethylamine-N-oxide (Me3NO) as a decarbonylation reagent, lead to the formation of heteroleptic tris(diimine) ruthenium(II) complexes, [Ru(L)(L1)(L2)]2+. Typically isolated as hexafluorophosphate or perchlorate salts, these complexes were characterised by UV-visible, infrared and mass spectroscopy, cyclic voltammetry, microanalyses and NMR spectroscopy. Single crystal X-ray studies have elucidated the structures of K[Ru(bpy)(phen)(4,4'-Me(2)bpy)](PF(6))(3).1/2H(2)O, [Ru(bpy)(5,6-Me(2)phen)(Hdpa)](ClO(4))(2), [Ru(bpy)(phen)(5,6-Me(2)phen)](ClO(4))(2), [Ru(bpy)(5,6'-Me(2)phen)(4,4'-Me(2)bpy)](PF(6))(2).EtOH, [Ru(4,4'-Me(2)bpy)(phen)(Hdpa)](PF(6))(2).MeOH and [Ru(bpy)(4,4'-Me(2)bpy)(Hdpa)](ClO(4))(2).1/2Hdpa (where Hdpa is di(2-pyridyl)amine). A novel feature of the first complex is the presence of a dinuclear anionic adduct, [K(2)(PF(6))(6)](4-), in which the two potassium centres are bridged by two fluorides from different hexafluorophosphate ions forming a K(2)F(2) bridging unit and by two KFPFK bridging moieties.  相似文献   

5.
The second method for the synthesis of cis-[Ru(III)Cl(2)(cyclam)]Cl (1) (cyclam = 1,4,8,11-tetraazacyclotetradecane), with use of cis-Ru(II)Cl(2)(DMSO)(4) (DMSO = dimethyl sulfoxide) as a starting complex, is reported together with the synthesis of [Ru(II)(cyclam)(bpy)](BF(4))(2).H(2)O (2) (bpy = 2,2'-bipyridine) from 1. The syntheses of Ru complexes of tris(2-aminoethyl)amine (tren) are also reported. A reaction between K(3)[Ru(III)(ox)(3)] (ox = oxalate) and tren affords fac-[Ru(III)Cl(3)(trenH)]Cl.(1)/(2)H(2)O (3) (trenH = bis(2-aminoethyl)(2-ammonioethyl)amine = monoprotonated tren) and (H(5)O(2))(2)[K(tren)][Ru(III)Cl(6)] (4) as major products and gives fac-[Ru(III)Cl(ox)(trenH)]Cl.(3)/(2)H(2)O (5) in very low reproducibility. A reaction between 3 and bpy affords [Ru(II)(baia)(bpy)](BF(4))(2) (6) (baia = bis(2-aminoethyl)(iminomethyl)amine), in which tren undergoes a selective dehydrogenation into baia. The crystal structures of 2-6 have been determined by X-ray diffraction, and their structural features are discussed in detail. Crystallographic data are as follows: 2, RuF(8)ON(6)C(20)B(2)H(34), monoclinic, space group P2(1)/c with a = 12.448(3) ?, b = 13.200(7) ?, c = 17.973(4) ?, beta = 104.28(2) degrees, V = 2862(2) ?(3), and Z = 4; 3, RuCl(4)O(0.5)N(4)C(6)H(20), monoclinic, space group P2(1)/a with a = 13.731(2) ?, b = 14.319(4) ?, c = 13.949(2) ?, beta = 90.77(1) degrees, V = 2742(1) ?(3), and Z = 8; 4, RuKCl(6)O(4)N(4)C(6)H(28), trigonal, space group R&thremacr; with a = 10.254(4), c = 35.03(1) ?, V = 3190(2) ?(3), and Z = 6; 5, RuCl(2)O(5.5)N(4)C(8)H(22), triclinic, space group P&onemacr; with a = 10.336(2) ?, b = 14.835(2) ?, c = 10.234(1) ?, alpha = 90.28(1) degrees, beta = 90.99(1) degrees, gamma = 92.07(1) degrees, V = 1567.9(4) ?(3), and Z = 4; 6, RuF(8)N(6)C(16)B(2)H(24), monoclinic, space group P2(1)/c, a = 10.779(2) ?, b = 14.416(3) ?, c = 14.190(2) ?, beta = 93.75(2) degrees, V = 2200.3(7) ?(3), and Z = 4. Compound 4 possesses a very unique layered structure made up of both anionic and cationic slabs, {[K(tren)](2)[Ru(III)Cl(6)]}(n)()(n)()(-) and {(H(5)O(2))(4)[Ru(III)Cl(6)]}(n)()(n)()(+) (n = infinity), in which both sheets {[K(tren)](2)}(n)()(2)(n)()(+) and {(H(5)O(2))(4)}(n)()(4)(n)()(+) offer cylindrical pores that are occupied with the [Ru(III)Cl(6)](3)(-) anions. The presence of a C=N double bond of baia in 6 is judged from the C-N distance of 1.28(2) ?. It is suggested that the structural restraint enhanced by the attachment of alkylene chelates at the nitrogen donors of amines results in either the mislocation or misdirection of the donors, leading to the elongation of the Ru-N(amine) distances and to the weakening of their trans influence. Such structural strain is also discussed as related to the spectroscopic and electrochemical properties of the cis-[Ru(II)L(4)(bpy)](2+) complexes (L(4) = (NH(3))(4), (ethylenediamine)(2), and cyclam).  相似文献   

6.
Reaction of excess Fe(cp)(2) (cp = eta(5)-C(5)Me(5)) dissolved in Et(2)O with [NHex(4)](4)[S(2)Mo(18)O(62)] in acetonitrile, followed by recrystallization of the precipitated solid from N,N'-dimethylformamide (DMF), leads to isolation of the complex [Fe(cp)(2)](5)[HS(2)Mo(18)O(62)].3DMF.2Et(2)O. The solid has been characterized by microanalysis, by voltammetric analysis, by (1)H NMR, diffuse reflectance infrared, EPR, and M?ssbauer spectroscopies, and by temperature-dependent magnetic susceptibility measurements. The data are consistent with the presence of a paramagnetic [Fe(cp)(2)](+) cation and a diamagnetic two-electron-reduced [HS(2)Mo(18)O(62)](5-) anion. The related salt [NBu(4)](5)[HS(2)Mo(18)O(62)].2H(2)O crystallizes in space group C2/c with a = 25.1255(3) A, b = 15.4110(2) A, c = 35.8646(4) A, beta = 105.9381(4), V = 13353.3(3) A(3), and Z = 4. The (2 e(-), 1 H(+))-reduced anion exists as the alpha-Dawson isomer, and its structure may be compared with those of the oxidized and (4 e(-), 3 H(+))-reduced anions as they exist in [NEt(4)](4)[S(2)Mo(18)O(62)].MeCN and [NBu(4)](5)[H(3)S(2)Mo(18)O(62)].4MeCN, respectively. Overall, the anion expands significantly upon the addition of two and then four electrons. However, the Mo...Mo distances along the bonds which connect the two equatorial belts decrease in the order 3.801, 3.780, and 3.736 A, making these distances the shortest for the three inequivalent sets of corner-sharing octahedra in each anion. This is consistent with the two or four added electrons localizing essentially in molecular orbitals which are bondiing with respect to interactions between the belts.  相似文献   

7.
[Ru(bpy)(3)](2+) (bpy = 2,2'-bipyridine) ions were entrapped into the cavities of two-dimensional anionic sheet-like coordination polymeric networks of [M(dca)(3)](-) (dca = dicyanamide; M = Mn(II) and Fe(II)). The prepared compounds, {[Ru(bpy)(3)][Mn(dca)(3)](2)}(n) (1) and {[Ru(bpy)(3)][Fe(dca)(3)](2)}(n) (2), were structurally characterized by X-ray single crystal analysis. The spectroscopic properties of the [Ru(bpy)(3)](2+) ion dramatically changed on its entrapment in [M(dca)(3)](-). The [Ru(bpy)(3)](2+) moiety present in 1 and 2 exhibits novel dual photo-emission at room temperature.  相似文献   

8.
Chiu WH  Peng SM  Che CM 《Inorganic chemistry》1996,35(11):3369-3374
Two bis(amido)ruthenium(IV) complexes, [Ru(IV)(bpy)(L-H)(2)](2+) and [Ru(IV)(L)(L-H)(2)](2+) (bpy = 2,2'-bipyridine, L = 2,3-diamino-2,3-dimethylbutane, L-H = (H(2)NCMe(2)CMe(2)NH)(-)), were prepared by chemical oxidation of [Ru(II)(bpy)(L)(2)](2+) and the reaction of [(n-Bu)(4)N][Ru(VI)NCl(4)] with L, respectively. The structures of [Ru(bpy)(L-H)(2)][ZnBr(4)].CH(3)CN and [Ru(L)(L-H)(2)]Cl(2).2H(2)O were determined by X-ray crystal analysis. [Ru(bpy)(L-H)(2)][ZnBr(4)].CH(3)CN crystallizes in the monoclinic space group P2(1)/n with a = 12.597(2) ?, b = 15.909(2) ?, c = 16.785(2) ?, beta = 91.74(1) degrees, and Z = 4. [Ru(L)(L-H)(2)]Cl(2).2H(2)O crystallizes in the tetragonal space group I4(1)/a with a = 31.892(6) ?, c = 10.819(3) ?, and Z = 16. In both complexes, the two Ru-N(amide) bonds are cis to each other with bond distances ranging from 1.835(7) to 1.856(7) ?. The N(amide)-Ru-N(amide) angles are about 110 degrees. The two Ru(IV) complexes are diamagnetic, and the chemical shifts of the amide protons occur at around 13 ppm. Both complexes display reversible metal-amide/metal-amine redox couples in aqueous solution with a pyrolytic graphite electrode. Depending on the pH of the media, reversible/quasireversible 1e(-)-2H(+) Ru(IV)-amide/Ru(III)-amine and 2e(-)-2H(+) Ru(IV)-amide/Ru(II)-amine redox couples have been observed. At pH = 1.0, the E degrees is 0.46 V for [Ru(IV)(bpy)(L-H)(2)](2+)/[Ru(III)(bpy)(L)(2)](3+) and 0.29 V vs SCE for [Ru(IV)(L)(L-H)(2)](2+)/[Ru(III)(L)(3)](3+). The difference in the E degrees values for the two Ru(IV)-amide complexes has been attributed to the fact that the chelating saturated diamine ligand is a better sigma-donor than 2,2'-bipyridine.  相似文献   

9.
The oxothio polyanions gamma-[SiW(10)M(2)S(2)O(38)](6)(-) (M = Mo(V), W(V)) were obtained through stereospecific addition of the dication [M(2)S(2)O(2)](2+) (M = Mo, W) to the divacant gamma-[SiW(10)O(36)](8)(-) anion in dimethylformamide. These compounds were isolated as crystals and are stable in usual organic solvents and in aqueous medium from pH = 1 to pH = 7. NEt(4)Cs(3)H(2)[SiW(10)Mo(2)S(2)O(38)].6H(2)O (a gamma-isomer derived from the alpha Keggin structure capped by the [Mo(2)S(2)O(2)](2+) fragment containing a metal-metal bond) crystallizes in the triclinic space group P&onemacr; with a = 12.050(3) ?, b = 12.695(2) ?, c = 20.111(4) ?, alpha = 74.35(2) degrees, beta = 86.83(2) degrees, gamma = 63.50(2) degrees, Z = 2. NEt(4)Cs(5)[SiW(12)S(2)O(38)].7H(2)O is isostructural and crystallizes in the triclinic space group P&onemacr; with a = 12.197(4) ?, b = 12.714(3) ?, c = 20.298(3) ?, alpha = 74.75(1) ?, beta = 86.48(2) degrees, gamma = 61.80(2) degrees, Z = 2. (183)W NMR spectra of Li(+) salts in aqueous solution agree with the solid state structures and reveal 100% purity for both anions. Polarographic, infrared and UV-vis data are also given.  相似文献   

10.
The interaction of two luminescent metallopolymers; [Ru(bpy)(2)(PVP)(10)](2+) and [Ru(bpy)(2)(CAIP)co-poly(7)](+), where bpy is 2,2'-bipyridyl, PVP is polyvinylpyridine, and (CAIP)co-poly(7) is poly(styrene(6)-co-p-(aminomethyl)styrene) amide linked to 2-(4-carboxyphenyl)imidazo[4,5-f] [1,10]phenanthroline, with the Dawson polyoxomolybdate α-[Mo(18)O(54)(SO(4))(2)](4-) is described. Both metallopolymers undergo electrostatic association with the polyoxometalate. From both electronic and luminescence spectroscopy the thermodynamic products were determined to be {[Ru(bpy)(2)(PVP)(10)](4.5)[Mo(18)O(54)(SO(4))(2)]}(5+) and {[Ru(bpy)(2)(CAIP)co-poly(7)](5)[Mo(18)O(54)(SO(4))(2)]}(+), i.e. in both instances, the number of ruthenium centres in the cluster exceeds the number required for charge neutralization of the molybdate centre. Association quenches the luminescence of the metallopolymer although, consistent with the excess of Ru(ii) present in the associated composites, emission is not completely extinguished even when a large excess of [Mo(18)O(54)(SO(4))(2)](4-) is present. The observed emission lifetime was not affected by [Mo(18)O(54)(SO(4))(2)](4-) therefore quenching was deemed static. The luminescent intensity data was found to fit best to a (sphere of action) Perrin model from which the radii of the quenching were calculated as 4.6 ? and 5.8 ? for [Ru(bpy)(2)(PVP)(10)](2+) and [Ru(bpy)(2)(CAIP co-poly)(7)](+) respectively. Both UV/Vis and resonance Raman data indicate the presence of a new optical transition centered around 490 nm for the composite, {[Ru(bpy)(2)(PVP)(10)](4.5)[Mo(18)O(54)(SO(4))(2)]}(5+) but not for {[Ru(bpy)(2)(CAIP)co-poly(7)](5)[Mo(18)O(54)(SO(4))(2)]}(+). This indicates strong electronic interaction between the metal centres in the former composite, which despite good thermodynamic analogy, is not observed for {[Ru(bpy)(2)(CAIP)co-poly(7)](5)[Mo(18)O(54)(SO(4))(2)]}(+). These results are consistent with photoelectrochemical studies of layer by layer assemblies of these films which indicate that the ruthenium centre sensitizes polyoxometalate photo-oxidation of benzyl alcohol in {[Ru(bpy)(2)(PVP)(10)](4.5)[Mo(18)O(54)(SO(4))(2)]}(5+) but not in {[Ru(bpy)(2)(CAIP)co-poly(7)](5)[Mo(18)O(54)(SO(4))(2)]}(+).  相似文献   

11.
Nitrosyl complexes with {Ru-NO} (6) and {Ru-NO} (7) configurations have been isolated in the framework of [Ru(trpy)(L)(NO)] ( n+ ) [trpy = 2,2':6',2'-terpyridine, L = 2-phenylimidazo[4,5- f]1,10-phenanthroline] as the perchlorate salts [ 4](ClO 4) 3 and [ 4](ClO 4) 2, respectively. Single crystals of protonated material [ 4-H (+)](ClO 4) 4.2H 2O reveal a Ru-N-O bond angle of 176.1(7) degrees and triply bonded N-O with a 1.127(9) A bond length. Structures were also determined for precursor compounds of [ 4] (3+) in the form of [Ru(trpy)(L)(Cl)](ClO 4).4.5H 2O and [Ru(trpy)(L-H)(CH 3CN)](ClO 4) 3.H 2O. In agreement with largely NO centered reduction, a sizable shift in nu(NO) frequency was observed on moving from [ 4] (3+) (1953 cm (-1)) to [ 4] (2+) (1654 cm (-1)). The Ru (II)-NO* in isolated or electrogenerated [ 4] (2+) exhibits an EPR spectrum with g 1 = 2.020, g 2 = 1.995, and g 3 = 1.884 in CH 3CN at 110 K, reflecting partial metal contribution to the singly occupied molecular orbital (SOMO); (14)N (NO) hyperfine splitting ( A 2 = 30 G) was also observed. The plot of nu(NO) versus E degrees ({RuNO} (6) --> {RuNO} (7)) for 12 analogous complexes [Ru(trpy)(L')(NO)] ( n+ ) exhibits a linear trend. The electrophilic Ru-NO (+) species [ 4] (3+) is transformed to the corresponding Ru-NO 2 (-) system in the presence of OH (-) with k = 2.02 x 10 (-4) s (-1) at 303 K. In the presence of a steady flow of dioxygen gas, the Ru (II)-NO* state in [ 4] (2+) oxidizes to [ 4] (3+) through an associatively activated pathway (Delta S++ = -190.4 J K (-1) M (-1)) with a rate constant ( k [s (-1)]) of 5.33 x 10 (-3). On irradiation with light (Xe lamp), the acetonitrile solution of paramagnetic [Ru(trpy)(L)(NO)] (2+) ([ 4] (2+)) undergoes facile photorelease of NO ( k NO = 2.0 x 10 (-1) min (-1) and t 1/2 approximately 3.5 min) with the concomitant formation of the solvate [Ru (II)(trpy)(L)(CH 3CN)] (2+) [ 2'] (2+). The photoreleased NO can be trapped as an Mb-NO adduct.  相似文献   

12.
Three heterotetranuclear complexes, [{Ru(II)(bpy)(2)(L(n))}(3)Mn(II)](8+) (bpy = 2,2'-bipyridine, n = 2, 4, 6), in which a Mn(II)-tris-bipyridine-like centre is covalently linked to three Ru(II)-tris-bipyridine-like moieties using bridging bis-bipyridine L(n) ligands, have been synthesised and characterised. The electrochemical, photophysical and photochemical properties of these complexes have been investigated in CH(3)CN. The cyclic voltammograms of the three complexes exhibit two successive very close one-electron metal-centred oxidation processes in the positive potential region. The first, which is irreversible, corresponds to the Mn(II)/Mn(III) redox system (E(pa) approximately 0.82 V vs Ag/Ag(+) 0.01 M in CH(3)CN-0.1 M Bu(4)NClO(4)), whereas the second which is, reversible, is associated with the Ru(II)/Ru(III) redox couple (E(1/2) approximately 0.91 V). In the negative potential region, three successive reversible four electron systems are observed, corresponding to ligand-based reduction processes. The three stable dimeric oxidized forms of the complexes, [Mn(2)(III,IV)O(2){Ru(II)(bpy)(2)(L(n))}(4)](11+), [Mn(2)(IV,IV)O(2){Ru(II)(bpy)(2)(L(n))}(4)](12+) and [Mn(2)(IV,IV)O(2){Ru(III)(bpy)(2)(L(n))}(4)](16+) are obtained in fairly good yields by sequential electrolyses after consumption of respectively 1.5, 0.5 and 3 electrons per molecule of initial tetranuclear complexes. The formation of the di-micro-oxo binuclear complexes are the result of the instability of the {[Ru(II)(bpy)(2)(L(n))](3)Mn(III)}(9+) species, which react with residual water, via a disproportionation reaction and the release of one ligand, [Ru(II)(bpy)(2)(L(n))](2+). A quantitative yield can be obtained for these reactions if the electrochemical oxidations are performed in the presence of an added external base like 2,6-dimethylpyridine. Photophysical properties of these compounds have been investigated showing that the luminescence of the Ru(II)-tris-bipyridine-like moieties is little affected by the presence of manganese within the tetranuclear complexes. A slight quenching of the excited states of the ruthenium moieties, which occurs by an intramolecular process, has been observed. Measurements made at low concentration (<1 x 10(-5) M) indicate that some decoordination of Mn(2+) arises in 1a-c. These measurements allow the calculation of the association constants for these complexes. Finally, photoinduced oxidation of the tetranuclear complexes has been performed by continuous photolysis experiments in the presence of a large excess of a diazonium salt, acting as a sacrificial oxidant. The three successive oxidation processes, Mn(II)--> Mn(III)Mn(IV), Mn(III)Mn(IV)--> Mn(IV)Mn(IV) and Ru(II)--> Ru(III) are thus obtained, the addition of 2,6-dimethylpyridine in the medium giving an essentially quantitative yield for the two first photo-induced oxidation steps as found for electrochemical oxidation.  相似文献   

13.
The electron transfer series of complexes [Cr((t)bpy)(3)](n)(PF(6))(n) (n = 3+, 2+, 1+, 0 (1-4)) has been synthesized and the molecular structures of 1, 2, and 3 have been determined by single-crystal X-ray crystallography; the structure of 4 has been investigated using extended X-ray absorption fine structure (EXAFS) analysis. Magnetic susceptibility measurements (4-300 K) established an S = 3/2 ground state for 1, an S = 1 ground state for 2, an S = 1/2 ground state for 3, and an S = 0 ground state for 4. The electrochemistry of this series in CH(3)CN solution exhibits three reversible one-electron transfer waves. UV-vis/NIR spectra and Cr K-edge X-ray absorption spectra (XAS) are reported. The same experimental techniques have been applied for [Cr(III)(tacn)(2)]Br(3)·5H(2)O (5) and [Cr(II)(tacn)(2)]Cl(2) (6), which possess an S = 3/2 and an S = 2 ground state, respectively (tacn = 1,4,7-triazacyclononane, a tridentate, pure σ-donor ligand). The Cr K-edge XAS spectra of the corresponding complexes K(4)[Cr(II)(CN)(6)]·10H(2)O (S = 1) (7) and K(3)[Cr(III)(CN)(6)] (S = 3/2) (8) have also been recorded. All complexes have been studied computationally with density functional theory (DFT) using the B3LYP functional. The molecular and electronic structures of the anionic members of the series [Cr(bpy)(3)](1-,2-,3-) have also been calculated. It is unequivocally shown that all members of the electron transfer series 1-4 and [Cr(bpy)(3)](n) (n = 3+, 2+, 1+, 0, 1-, 2, 3-) possess a central Cr(III) ion ((t(2g))(3), S = 3/2). The three N,N'-coordinated neutral (bpy(0)) ligands in the trication 1 and [Cr(III)(bpy)(3)](3+) are one-electron reduced in a stepwise fashion to localized one, two, and three π-radical anions (bpy(?))(1-) in the dicationic, monocationic, and neutral species, respectively. Complexes 2 and [Cr(bpy)(3)](2+) cannot be described as low-spin Cr(II) species; they are in fact best described as [Cr(III)((t)bpy(?))((t)bpy(0))(2)](2+) and [Cr(III)(bpy(?))(bpy(0))(2)](2+) species. Further one-electron reductions yield one, two, and three diamagnetic (bpy(2-))(2-) dianions in the mono-, di-, and trianion. Thus, [Cr(III)(bpy(2-))(3)](3-) is a normal Werner-type Cr(III) (!) species. In all complexes containing (bpy(?))(1-) ligands, the ligand spins are strongly antiferromagnetically coupled to the spins of the central Cr(III) ion (d(3), S(Cr) = 3/2) affording the observed ground states given above. Thus, all redox chemistry of [Cr(bpy)(3)](n) complexes is ligand-based and documents that the ligand 2,2'-bipyridine is a redox noninnocent ligand; it exists in three oxidation levels in these complexes: as N,N'-coordinated neutral (bpy(0)), monoanionic π-radical (bpy(?))(1-), and diamagnetic dianionic (bpy(2-))(2-).  相似文献   

14.
The redox systems [Ru(L)(bpy)(2)](k), [Ru(L)(2)(bpy)](m), and [Ru(L)(3)](n) containing the potentially redox-active ligand 9-oxidophenalenone = L(-) were investigated by spectroelectrochemistry (UV-vis-near-IR and electron paramagnetic resonance) in conjunction with density functional theory (DFT) calculations. Compounds [Ru(L(-))(bpy)(2)]ClO(4) ([1]ClO(4)) and [Ru(L(-))(2)(bpy)]ClO(4) ([2]ClO(4)) were structurally characterized. In addition to establishing electron-transfer processes involving the Ru(II)/Ru(III)/Ru(IV) and bpy(0)/bpy(?-) couples, evidence for the noninnocent behavior of L(-) was obtained from [Ru(IV)(L(?))(L(-))(bpy)](3+), which exhibits strong near-IR absorption due to ligand-to-ligand charge transfer. In contrast, the lability of the electrogenerated anion [Ru(L)(2)(bpy)](-) is attributed to a resonance situation [Ru(II)(L(?2-))(L(-))(bpy)](-)/[Ru(II)(L(-))(2) (bpy(?-))](-), as suggested by DFT calculations.  相似文献   

15.
Zhang X  Luo W  Zhang YP  Jiang JB  Zhu QY  Dai J 《Inorganic chemistry》2011,50(15):6972-6978
A series of supertetrahedral polymers of chalcogenometalates (T3 cluster compounds) integrated with M-phen complexes (phen =1,10-phenanthroline; M = Ni, Fe) was prepared by a similar solvothermal technique. Compound [Fe(phen)(3)](4)[H(4)In(20)S(38)]·Hphen·3HDMA·8H(2)O (Mp-InS-4) (DMA = dimethylamine) is a 1-D straight chain. Compounds [M(phen)(3)](4)[In(20)S(37)]·6Hphen·4H(2)O (M = Ni, Mp-InS-5; Fe, Mp-InS-6) are the first reported 2-D Tn polymers integrated with complex cations of [M(phen)(3)](2+). Compound [Ni(phen)(3)](4)[H(4)In(20)S(38)]·2Hphen·2HDMA·3H(2)O (Mp-InS-7) shows a zigzag 1-D structure. We find that the reaction time is an important factor in assembling of the T3 clusters. Prolonging the reaction time seems favorable to the higher condensed phases (from 0-D to 2-D). However, a longer reaction time resulted in the crack of 2-D structure. Integrating M-phen complex cations with the chalcogenido anions can improve absorption of the materials in the visible range due to the charge transfers within the cations or between cations and anions.  相似文献   

16.
The spectroscopic and photophysical properties of [Ru(bpy)(3)](2)[[Mo(18)O(54)(SO(3))(2)], where bpy is 2,2'-bipyridyl and [Mo(18)O(54)(SO(3))(2)](4-) is either the α or β-sulfite containing polyoxomolybdate isomer, have been measured and compared with those for the well known but structurally distinct sulfate analogue, α-[Mo(18)O(54)(SO(4))(2)](4-). Electronic difference spectroscopy revealed the presence of new spectral features around 480 nm, although they are weak in comparison with the [Ru(bpy)(3)](2)[Mo(18)O(54)(SO(4))(2)] analogue. Surprisingly, Stern-Volmer plots of [Ru(bpy)(3)](2+) luminescence quenching by the polyoxometallate revealed the presence of both static and dynamic quenching for both α and β-[Mo(18)O(54)(SO(3))(2)](4-). The association constant inferred for the ion cluster [Ru(bpy)(3)](2)α-[Mo(18)O(54)(SO(4))(2)] is K = 5.9 ± 0.56 × 10(6) and that for [Ru(bpy)(3)](2)β-[Mo(18)O(54)(SO(4))(2)] is K = 1.0 ± 0.09 × 10(7). Unlike the sulfate polyoxometalates, both sulfite polyoxometalate-ruthenium adducts are non-luminescent. Despite the strong electrostatic association in the adducts resonance Raman and photoelectrochemical studies suggests that unlike the sulfato polyoxometalate analogue there is no sensitization of the polyoxometalate photochemistry by the ruthenium centre for the sulfite anions. In addition, the adducts exhibit photochemical lability in acetonitrile, attributable to decomposition of the ruthenium complex, which has not been observed for other [Ru(bpy)(3)](2+) -polyoxometalate adducts. These observations suggest that less electronic communication exists between the [Ru(bpy)(3)](2+) and the sulfite polyoxoanions relative to their sulfate polyoxoanion counterparts, despite their structural and electronic analogy. The main distinction between sulfate and sulfite polyoxometalates lies in their reversible reduction potentials, which are more positive by approximately 100 mV for the sulfite anions. This suggests that the capacity for [Ru(bpy)(3)](2+) or analogues to sensitize photoreduction in the adducts of polyoxometalates requires very sensitive redox tuning.  相似文献   

17.
We have successfully applied electrospray ionization mass spectrometry (ESI-MS) and (1)H NMR analyses to study ligand substitution reactions of mu-oxo ruthenium bipyridine dimers cis,cis-[(bpy)(2)(L)RuORu(L')(bpy)(2)](n+) (bpy = 2,2'-bipyridine; L and L' = NH(3), H(2)O, and HO(-)) with solvent molecules, that is, acetonitrile, methanol, and acetone. The results clearly show that the ammine ligand is very stable and was not substituted by any solvents, while the aqua ligand was rapidly substituted by all the solvents. In acetonitrile and acetone solutions, the substitution reaction of the aqua ligand(s) competed with a deprotonation reaction from the ligand. The hydroxyl ligand was not substituted by acetonitrile or acetone, but it exchanged slowly with CH(3)O(-) in methanol. The substitution reaction of the aqua ligands in [(bpy)(2)(H(2)O)Ru(III)ORu(III)(H(2)O)(bpy)(2)](4+) was more rapid than that of the hydroxyl ligand in [(bpy)(2)(H(2)O)Ru(III)ORu(IV)(OH)(bpy)(2)](4+). In methanol, slow reduction of Ru(III) to Ru(II) was observed in all the mu-oxo dimers, and the Ru-O-Ru bridge was then cleaved to give mononuclear Ru(II) complexes.  相似文献   

18.
Vittal JJ  Dean PA 《Inorganic chemistry》1996,35(11):3089-3093
The salts (Ph(4)E)[M(SOCPh)(3)] (M = Zn, Cd, or Hg; E = P or As) are produced by the reaction of Zn(NO(3))(2).6 H(2)O, Cd(NO(3))(2).4H(2)O or HgCl(2) with Et(3)NH(+)PhCOS(-) and (Ph(4)E)X (E = P, X = Br; E = As, X = Cl) in aqueous MeOH in the ratios M(II):PhCOS(-):Ph(4)E(+) = 1:>/=3:>/=1. The crystal structures of (Ph(4)P)[Zn(SOCPh)(3)] (1), (Ph(4)As)[Cd(SOCPh)(3)] (2) and (Ph(4)P)[Hg(SOCPh)(3)] (3) have been determined by single-crystal X-ray diffraction experiments. Crystal data for 1: triclinic; space group P&onemacr;; Z = 2; a = 10.819(2) ?, b = 13.219(3) ?, c = 15.951(3) ?; alpha = 101.75(2) degrees, beta = 97.92(1) degrees, gamma = 109.18(2) degrees. Crystal data for 2: triclinic; space group P&onemacr;; Z= 2; a = 10.741(2) ?, b = 13.168(2) ?, c = 15.809(2) ?; alpha = 101.00(1) degrees, beta = 97.65(1) degrees, gamma = 109.88(1) degrees. Crystal data for 3: monoclinic; space group P2(1)/n; Z = 4; a = 13.302(2) ?, b = 14.276(2) ?, c = 21.108(2) ?; beta = 90.92(1) degrees. The compounds 1 and 2 are isomorphous and isostructural. In the anions [M(SOCPh)(3)](-) the metal atoms have trigonal planar coordination by three sulfur atoms. The metal atoms are further more weakly coordinated intramolecularly to one (M = Hg) or two (M = Zn, Cd) thiobenzoate oxygen atom(s). Using the Bond Valence approach it is found that the contribution of M.O bonding to the total bonding is in the order Cd > Zn > Hg. The metal ((113)Cd, (199)Hg) NMR signals of [M(SOCPh)(3)](-) (M = Cd, Hg) are more shielded than those found for MS(3) kernels in thiolate complexes, a difference attributed to the M(.)O bonding in the thiobenzoate complexes. The (113)Cd resonance of [Cd(SOCPh)(3)](-) in dilute solution is in the region anticipated from dilution data for [Na(Cd{SOCPh}(3))(2)](-).  相似文献   

19.
Homoleptic octahedral, superelectrophilic sigma-bonded metal carbonyl cations of the type [M(CO)(6)](2+) (M = Ru, Os) are generated in the Bronsted-Lewis conjugate superacid HF/SbF(5) by reductive carbonylation of M(SO(3)F)(3) (M = Ru, Os) or OsF(6). Thermally stable salts form with either [Sb(2)F(11)](-) or [SbF(6)](-) as anion, just as for the previously reported [Fe(CO)(6)](2+) cation. The latter salts are generated by oxidative (XeF(2)) carbonylation of Fe(CO)(5) in HF/SbF(5). A rationale for the two diverging synthetic approaches is provided. The thermal stabilities of [M(CO)(6)][SbF(6)](2) salts, studied by DSC, range from 180 degrees C for M = Fe to 350 degrees C for M = Os before decarbonylation occurs. The two triads [M(CO)(6)][SbF(6)](2) and [M(CO)(6)][Sb(2)F(11)](2) (M = Fe, Ru, Os) are extensively characterized by single-crystal X-ray diffraction and vibrational and (13)C NMR spectroscopy, aided by computational studies of the cations. The three [M(CO)(6)][SbF(6)](2) salts (M = Fe, Ru, Os) crystallize in the tetragonal space group P4/mnc (No. 128), whereas the corresponding [Sb(2)F(11)](-) salts are monoclinic, crystallizing in space group P2(1)/n (No. 14). In both triads, the unit cell parameters are nearly invariant of the metal. Bond parameters for the anions [SbF(6)](-) and [Sb(2)F(11)](-) and their vibrational properties in the two triads are completely identical. In all six salts, the structural and vibrational properties of the [M(CO)(6)](2+) cations (M = Fe, Ru, Os) are independent of the counteranion and for the most part independent of M and nearly identical. Interionic C...F contacts are similarly weak in all six salts. Metal dependency is noted only in the (13)C NMR spectra, in the skeletal M-C vibrations, and to a much smaller extent in some of the C-O stretching fundamentals (A(1g) and T(1u)). The findings reported here are unprecedented among metal carbonyl cations and their salts.  相似文献   

20.
Treatment of [Ni(L)][L =((-)SCH(2)CH(2)NH[double bond, length as m-dash]C(CH(3))-)(2)] with Ag(+) in water gave a pinwheel-like S-bridged Ni(II)(3)Ag(I)(2) structure in [Ag(2)[Ni(L)](3)](2+), which further reacted with [Ni(L)] to produce a Ni(II)(4)Ag(I)(2) structure in [Ag(2)[Ni(L)](4)](2+) and a Ni(II)(7)Ag(I)(4) structure in [Ag(4)[Ni(L)](7)](4+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号