首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Voltammetric, photo-physical and photo-electrochemical properties of the Dawson polyoxometalate anions alpha-[S(2)M(18)O(62)](4-) (M = Mo, W) are presented, both in the presence and absence of a series of [Ru(II)L(n)](+/2+) cations [L(n) = (bpy)(3), (bpy)(2)(Im)(2), (bpy)(2)(dpq), (bpy)(2)(box) and (biq)(2)(box)]. Electrochemical processes for both the anion and Ru(II/III) couples were detected in solutions of the salts [Ru(II)L(n)](2)[S(2)M(18)O(62)] in dimethylformamide (0.1 M Bu(4)NPF(6)) by both cyclic and hydrodynamic voltammetries. Responses were also detected when the solid salts were adhered to the surface of a glassy carbon electrode in contact with an electrolyte in which they are insoluble (CH(3)CN; 0.1M Bu(4)NPF(6)). Photolysis experiments were performed on solutions of the salts [R(4)N](4)[S(2)M(18)O(62)] (R = n-butyl or n-hexyl) and [Ru(II)L(n)](2)[S(2)M(18)O(62)] at 355 and 420 nm in dimethylformamide and acetonitrile in the presence and absence of benzyl alcohol (10% v/v). When associated with [Ru(bpy)(3)](2+), the molybdate anion exhibited a large increase in the quantum yield for photo-reduction at 420 nm. The quantum yield for the tungstate analogue was lower but the experiments again provided clear evidence for sensitization of the photo-reduction reaction in the visible spectral region. The origin of this sensitization is ascribed to the new optical transition observed around 480 nm in static ion clusters {[Ru(bpy)(3)][S(2)M(18)O(62)]}(2-) and {[Ru(bpy)(3)](2)[S(2)M(18)O(62)]} present in solution. Measurable photocurrents resulted from irradiation of solutions of the anions with white light in the presence of the electron donor dimethylformamide. Evidence is also presented for possible quencher-fluorophore interactions in the presence of certain [Ru(II)L(n)](+) cations.  相似文献   

2.
The Mo(3)SnS(4)(6+) single cube is obtained by direct addition of Sn(2+) to [Mo(3)S(4)(H(2)O)(9)](4+). UV-vis spectra of the product (0.13 mM) in 2.00 M HClO(4), Hpts, and HCl indicate a marked affinity of the Sn for Cl(-), with formation of the more strongly yellow [Mo(3)(SnCl(3))S(4)(H(2)O)(9)](3+) complex complete in as little as 0.050 M Cl(-). The X-ray crystal structure of (Me(2)NH(2))(6)[Mo(3)(SnCl(3))S(4)(NCS)(9)].0.5H(2)O has been determined and gives Mo-Mo (mean 2.730 ?) and Mo-Sn (mean 3.732 ?) distances, with a difference close to 1 ?. The red-purple double cube cation [Mo(6)SnS(8)(H(2)O)(18)](8+) is obtained by reacting Sn metal with [Mo(3)S(4)(H(2)O)(9)](4+). The double cube is also obtained in approximately 50% yield by BH(4)(-) reduction of a 1:1 mixture of [Mo(3)SnS(4)(H(2)O)(10)](6+) and [Mo(3)S(4)(H(2)O)(9)](4+). Conversely two-electron oxidation of [Mo(6)SnS(8)(H(2)O)(18)](8+) with [Co(dipic)(2)](-) or [Fe(H(2)O(6)](3+) gives the single cube [Mo(3)SnS(4)(H(2)O)(12)](6+) and [Mo(3)S(4)(H(2)O)(9)](4+) (up to 70% yield), followed by further two-electron oxidation to [Mo(3)S(4)(H(2)O)(9)](4+) and Sn(IV). The kinetics of the first stages have been studied using the stopped-flow method and give rate laws first order in [Mo(6)SnS(8)(H(2)O)(18)](8+) and the Co(III) or Fe(III) oxidant. The oxidation with [Co(dipic)(2)](-) has no [H(+)] dependence, [H(+)] = 0.50-2.00 M. With Fe(III) as oxidant, reaction steps involving [Fe(H(2)O)(6)](3+) and [Fe(H(2)O)(5)OH](2+) are implicated. At 25 degrees C and I = 2.00 M (Li(pts)) k(Co) is 14.9 M(-)(1) s(-)(1) and k(a) for the reaction of [Fe(H(2)O)(6)](3+) is 0.68 M(-)(1) s(-)(1) (both outer-sphere reactions). Reaction of Cu(2+) with the double but not the single cube is observed, yielding [Mo(3)CuS(4)(H(2)O)(10)](5+). A redox-controlled mechanism involving intermediate formation of Cu(+) and [Mo(3)S(4)(H(2)O)(9)](4+) accounts for the changes observed.  相似文献   

3.
A series of new complexes, Mo(2)O(2)S(2)[S(2)P(OR)(2)](2) (where R = Et, n-Pr, i-Pr) and Mo(2)O(2)S(2)[S(2)POGO](2) (where G = -CH(2)CMe(2)CH(2)-, -CMe(2)CMe(2)-) have been prepared by the dropwise addition of an ethanolic solution of the ammonium or sodium salt of the appropriate O,O-dialkyl or -alkylene dithiophosphoric acid, or the acid itself, to a hot aqueous solution of molybdenum(V) pentachloride. The complexes were also formed by heating solutions of Mo(2)O(3)[S(2)P(OR)(2)](4) or Mo(2)O(3)[S(2)POGO](4) species in glacial acetic acid. The Mo(2)O(2)S(2)[S(2)P(OR)(2)](2) and Mo(2)O(2)S(2)[S(2)POGO](2) compounds were characterized by elemental analyses, (1)H, (13)C, and (31)P NMR, and infrared and Raman spectroscopy, as were the 1:2 adducts formed on reaction with pyridine. The crystal structures of Mo(2)O(2)S(2)[S(2)P(OEt(2))](2), Mo(2)O(2)S(2)[S(2)P(OEt)(2)](2).2NC(5)H(5), and Mo(2)O(3)[S(2)P(OPh)(2)](4) were determined. Mo(2)O(2)S(2)[S(2)P(OEt)(2)](2) (1) crystallizes in space group C2/c, No. 15, with cell parameters a = 15.644(3) ?, b = 8.339(2) ?, c = 18.269(4) ?, beta = 103.70(2) degrees, V = 2315.4(8) ?(3), Z = 4, R = 0.0439, and R(w) = 0.0353. Mo(2)O(2)S(2)[S(2)P(OEt)(2)](2).2NC(5)H(5) (6) crystallizes in space group P&onemacr;, No. 2, with the cell parameters a = 12.663(4) ?,b = 14.291(5) ?, c = 9.349(3) ?, alpha = 100.04(3) degrees, beta = 100.67(3) degrees, gamma = 73.03(3) degrees V = 1557(1) ?(3), Z = 2, R = 0.0593, and R(w) = 0.0535. Mo(2)O(3)[S(2)P(OPh)(2)](4) (8) crystallizes in space group P2(1)/n, No. 14, with cell parameters a = 15.206(2)?, b = 10.655(3)?, c = 19.406(3)?, beta = 111.67(1) degrees, V = 2921(1)?(3), Z = 2, R = 0.0518, R(w) = 0.0425. The immediate environment about the molybdenum atoms in 1 is essentially square pyramidal if the Mo-Mo interaction is ignored. The vacant positions in the square pyramids are occupied by two pyridine molecules in 6, resulting in an octahedral environment with very long Mo-N bonds. The terminal oxygen atoms in both 1 and 6 are in the syn conformation. In 8, which also has a distorted octahedral environment about molybdenum, two of the dithiophosphate groups are bidentate as in 1 and 6, but the two others have one normal Mo-S bond and one unusually long Mo-S bond.  相似文献   

4.
Reaction of acidified (pH approximately 7) sodium tungstate solutions with transition metal cations (Fe(3+), Ni(2+), Zn(2+), Co(2+)) leads to the formation of transition-metal-disubstituted Keggin-type heteropolytungstates with 3d-metal ions distributed over three different positions. A detailed investigation of the synthesis conditions confirmed that the complexes could equally be obtained using aqueous solutions of either Na(2)WO(4).2H(2)O (sodium monotungstate) at pH approximately 7, Na(6)[W(7)O(24)]. approximately 14H(2)O (sodium paratungstate A), or Na(10)[H(2)W(12)O(42)].27H(2)O (sodium paratungstate B) as starting materials. Three complexes, (NH(4))(6)Ni(II)(0.5)[alpha-Fe(III)O(4)W(11)O(30)Ni(II)O(5)(OH(2))].18H(2)O, (NH(4))(7)Zn(0.5)[alpha-ZnO(4)W(11)O(30) ZnO(5)(OH(2))].18H(2)O, and (NH(4))(7)Ni(II)(0.5)[alpha-ZnO(4)W(11)O(30)Ni(II)O(5)(OH(2))].18H(2)O were isolated in crystalline form. X-ray single-crystal structure analysis revealed that the solid-state structures of the three compounds consist of four main structural fragments, namely [MO(4)W(11)O(30)M'O(5)(OH(2))](n-) (Keggin-type, alpha-isomer) heteropolytungstates, hexaquo metal cations, [M'(OH(2))(6)](2+), ammonium-water cluster ions, [(NH(4)(+))(8)(OH(2))(12)], and additional ammonium cations and water molecules. The 3d metals occupy the central (tetrahedral, M) and the peripheral (octahedral, M') positions of the Keggin anion, as well as cationic sites (M') outside of the polyoxotungstate framework. UV-vis spectroscopy, solution ((1)H, (183)W) and solid-state ((1)H) NMR, and also chemical analysis data provided evidence that the 3d-metal-disubstituted Keggin anions do not exist in solution but are being formed only during the crystallization process. Investigations in the solid state and in solution were completed by ESR, IR, and Raman measurements.  相似文献   

5.
The reaction of [PPN](2)[Re(6)C(CO)(19)] with Mo(CO)(6) and Ru(3)(CO)(12) under sunlamp irradiation provided the new mixed-metal clusters [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)] and [PPN](2)[Re(6)C(CO)(18)Ru(CO)(3)], which were isolated in yields of 85% and 61%, respectively. The compound [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)] crystallizes in the monoclinic space group P2(1)/c with a = 20.190 (7) ?, b = 16.489 (7) ?, c = 27.778 (7) ?, beta = 101.48 (2) degrees, and Z = 4 (at T = -75 degrees C). The cluster anion is composed of a Re(6)C octahedral core with a face capped by a Mo(CO)(4) fragment. There are three terminal carbonyl ligands coordinated to each rhenium atom. The four carbonyl ligands on the molybdenum center are essentially terminal, with one pair of carbonyl ligands (C72-O72 and C74-O74) subtending a relatively large angle at molybdenum (C72-Mo-C74 = 147.2(9) degrees ), whereas the remaining pair of carbonyl ligands (C71-O71 and C73-O73) subtend a much smaller angle (C71-Mo-C73 = 100.5(9) degrees ). The (13)C NMR spectrum of (13)CO-enriched [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)] shows signals for four sets of carbonyl ligands at -40 degrees C, consistent with the solid state structure, but the carbonyl ligands undergo complete scrambling at ambient temperature. The (13)C NMR spectrum of (13)CO-enriched [PPN](2)[Re(6)C(CO)(18)Ru(CO)(3)] at 20 degrees C is consistent with the expected structure of an octahedral Re(6)C(CO)(18) core capped by a Ru(CO)(3) fragment. The visible spectrum of [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)] shows a broad, strong band at 670 nm (epsilon = 8100), whereas all of the absorptions of [PPN](2)[Re(6)C(CO)(18)Ru(CO)(3)] are at higher energy. An irreversible oxidation wave with E(p) at 0.34 V is observed for [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)], whereas two quasi-reversible oxidation waves with E(1/2) values of 0.21 and 0.61 V (vs Ag/AgCl) are observed for [PPN](2)[Re(6)C(CO)(18)Ru(CO)(3)]. The molybdenum cap in [Re(6)C(CO)(18)Mo(CO(4))](2-) is cleaved by heating in donor solvents, and by treatment with H(2), to give largely [H(2)Re(6)C(CO)(18)](2-). In contrast, [Re(6)C(CO)(18)Ru(CO)(3)](2-) shows no tendency to react under similar conditions.  相似文献   

6.
Chen L  Cotton FA 《Inorganic chemistry》1996,35(25):7364-7369
Reaction of [Zr(6)Cl(18)H(5)](3)(-) (1) with 1 equiv of TiCl(4) yields a new cluster anion, [Zr(6)Cl(18)H(5)](2)(-) (2), which can be converted back into [Zr(6)Cl(18)H(5)](3)(-) (1) upon addition of 1 equiv of Na/Hg. Cluster 2 is paramagnetic and unstable in the presence of donor molecules. It undergoes a disproportionation reaction to form 1, some Zr(IV) compounds, and H(2). It also reacts with TiCl(4) to form [Zr(2)Cl(9)](-) (4) and a tetranuclear mixed-metal species, [Zr(2)Ti(2)Cl(16)](2)(-) (3). The oxidation reaction of 1 with TiCl(4) is unique. Oxidation of 1 with H(+) in CH(2)Cl(2) solution results in the formation of [ZrCl(6)](2)(-) (5) and H(2), while in py solution the oxidation product is [ZrCl(5)(py)](-) (6). There is no reaction between 1 and TiI(4), ZrCl(4), [TiCl(6)](2)(-), [ZrCl(6)](2)(-), or CrCl(3). Compounds [Ph(4)P](2)[Zr(6)Cl(18)H(5)] (2a), [Ph(4)P](2)[Zr(2)Ti(2)Cl(16)] (3a), [Ph(4)P](2)[Zr(2)Cl(9)] (4a), [Ph(4)P](2)[ZrCl(6)].4MeCN (5a.4MeCN), and [Ph(4)P][ZrCl(5)(py)] (6a) were characterized by X-ray crystallography. Compound 2a crystallized in the trigonal space group R&thremacr; with cell dimensions (20 degrees C) of a = 28.546(3) ?, b = 28.546(3) ?, c = 27.679(2) ?, V = 19533(3) ?(3), and Z = 12. Compound 3a crystallized in the triclinic space group P&onemacr; with cell dimensions (-60 degrees C) of a = 11.375(3) ?, b = 13.357(3) ?, c = 11.336(3) ?, alpha = 106.07(1) degrees, beta = 114.77(1) degrees, gamma = 88.50(1) degrees, V = 1494.8(7) ?(3), and Z = 1. Compound 4a crystallized in the triclinic space group P&onemacr; with cell dimensions (-60 degrees C) of a = 12.380(5) ?, b = 12.883(5) ?, c = 11.000(4) ?, alpha = 110.39(7) degrees, beta = 98.29(7) degrees, gamma = 73.12(4) degrees, V = 1572(1) ?(3), and Z = 2. Compound 5a.4MeCN crystallized in the monoclinic space group P2(1)/c with cell dimensions (-60 degrees C) of a = 9.595(1) ?, b = 19.566(3) ?, c = 15.049(1) ?, beta = 98.50(1) degrees, V = 2794.2(6) ?(3), and Z = 2. Compound 6a crystallized in the monoclinic space group P2(1)/c with cell dimensions (20 degrees C) of a = 10.3390(7) ?, b = 16.491(2) ?, c = 17.654(2) ?, beta = 91.542(6) degrees, V = 3026.4(5) ?(3), and Z = 4.  相似文献   

7.
The oxothio polyanions gamma-[SiW(10)M(2)S(2)O(38)](6)(-) (M = Mo(V), W(V)) were obtained through stereospecific addition of the dication [M(2)S(2)O(2)](2+) (M = Mo, W) to the divacant gamma-[SiW(10)O(36)](8)(-) anion in dimethylformamide. These compounds were isolated as crystals and are stable in usual organic solvents and in aqueous medium from pH = 1 to pH = 7. NEt(4)Cs(3)H(2)[SiW(10)Mo(2)S(2)O(38)].6H(2)O (a gamma-isomer derived from the alpha Keggin structure capped by the [Mo(2)S(2)O(2)](2+) fragment containing a metal-metal bond) crystallizes in the triclinic space group P&onemacr; with a = 12.050(3) ?, b = 12.695(2) ?, c = 20.111(4) ?, alpha = 74.35(2) degrees, beta = 86.83(2) degrees, gamma = 63.50(2) degrees, Z = 2. NEt(4)Cs(5)[SiW(12)S(2)O(38)].7H(2)O is isostructural and crystallizes in the triclinic space group P&onemacr; with a = 12.197(4) ?, b = 12.714(3) ?, c = 20.298(3) ?, alpha = 74.75(1) ?, beta = 86.48(2) degrees, gamma = 61.80(2) degrees, Z = 2. (183)W NMR spectra of Li(+) salts in aqueous solution agree with the solid state structures and reveal 100% purity for both anions. Polarographic, infrared and UV-vis data are also given.  相似文献   

8.
Reaction of AgBF(4), KNH(2), K(2)Se, Se, and [2.2.2]-cryptand in acetonitrile yields [K([2.2.2]-cryptand)](4)[Ag(4)(Se(2)C(2)(CN)(2))(4)] (1). In the unit cell of 1 there are four [K([2.2.2]-cryptand)](+) units and a tetrahedral Ag(4) anionic core coordinated in mu(1)-Se, mu(2)-Se fashion by each of four mns ligands (mns = maleonitrilediselenolate, [Se(2)C(2)(CN)(2)](2)(-)). Reaction of AgNO(3), Na(2)(mnt) (mnt = maleonitriledithiolate, [S(2)C(2)(CN)(2)](2)(-)), and [2.2.2]-cryptand in acetonitrile yields [Na([2.2.2]-cryptand)](4)[Ag(4)(mnt)(4)].0.33MeCN (2). The Ag(4) anion of 2 is analogous to that in 1. Reaction of AgNO(3), Na(2)(mnt), and [NBu(4)]Br in acetonitrile yields [NBu(4)](4)[Ag(4)(mnt)(4)] (3). The anion of 3 also comprises an Ag(4) core coordinated by four mnt ligands, but the Ag(4) core is diamond-shaped rather than tetrahedral. Reaction of [K([2.2.2]-cryptand)](3)[Ag(mns)(Se(6))] with KNH(2) and [2.2.2]-cryptand in acetonitrile yields [K([2.2.2]-cryptand)](3)[Ag(mns)(2)].2MeCN (4). The anion of 4 comprises an Ag center coordinated by two mns ligands in a tetrahedral arrangement. Reaction of AgNO(3), 2 equiv of Na(2)(mnt), and [2.2.2]-cryptand in acetonitrile yields [Na([2.2.2]-cryptand)](3)[Ag(mnt)(2)] (5). The anion of 5 is analogous to that of 4. Electronic absorption and infrared spectra of each complex show behavior characteristic of metal-maleonitriledichalcogenates. Crystal data (153 K): 1, P2/n, Z = 2, a = 18.362(2) A, b = 16.500(1) A, c = 19.673(2) A, beta = 94.67(1) degrees, V = 5941(1) A(3); 2, P4, Z = 4, a= 27.039(4) A, c = 15.358(3) A, V = 11229(3) A(3); 3, P2(1)/c, Z = 6, a = 15.689(3) A, b = 51.924(11) A, c = 17.393(4) A, beta = 93.51(1) degrees, V = 14142(5) A(3); 4, P2(1)/c, Z = 4, a = 13.997(1) A, b = 21.866(2) A, c = 28.281(2) A, beta = 97.72(1) degrees, V = 8578(1) A(3); 5, P2/n, Z = 2, a = 11.547(2) A, b = 11.766(2) A, c = 27.774(6) A, beta = 91.85(3) degrees, V = 3772(1) A(3).  相似文献   

9.
A novel compound, (Himi)(H(3)O) [Cu(imi)(2)](2)[P(2)Mo(5)O(23)].H(2)O 1 (imi=imidazole), was synthesized by hydrothermal method and characterized by X-ray single analysis, ESR spectrum, one-dimensional (1D) infrared spectroscopy and two-dimensional (2D) correlation infrared spectroscopy under thermal and magnetism perturbation. Crystal data for the compound 1: orthorhombic system, space group Pnma, a = 14.580(3)A, b = 21.073(4)A, c = 16.664(3)A, Z = 4. It consists of the Mo-Cu building-blocks [Cu(imi)(4)](2)[P(2)Mo(5)O(23)](2-), protonated imidazole cations and water molecules. In the Mo-Cu building-blocks, [Mo(5)P(2)O(23)](6-) clusters are linked by {Cu(imi)(4)}(2+) group to form a two-dimension parallelogram griddling structure. From the 2D IR correlation spectroscopy analyses, it is discovered that the intensity changes of Mo=O and P-O band are sensitive to the temperature variation, whereas the Mo-O bond linking to Cu(2+) can be remarkably affected by the magnetism variation. Furthermore, the intensity changes of P-O bands occur prior to that of the Mo=O band during the temperature elevation.  相似文献   

10.
The reactions of neutral or cationic manganese carbonyl species towards the oxo-nitrosyl complex [Na(MeOH)[Mo(5)O(13)(OCH(3))(4)(NO)]](2-) have been investigated in various conditions. This system provides an unique opportunity for probing the basic reactions involved in the preparation of solid oxide-supported heterogeneous catalysts, that is, mobility of transition-metal species at the surface and dissolution-precipitation of the support. Under nitrogen and in the dark, the reaction of in situ generated fac-[Mn(CO)(3)](+) species with (nBu(4)N)(2)[Na(MeOH)-[Mo(5)O(13)(OMe)(4)(NO)]] in MeOH yields (nBu(4)N)(2)[Mn(CO)(3)(H(2)O)[Mo(5)O(13)(OMe)(4)(NO)]] at room temperature, while (nBu(4)N)(3)[Na[Mo(5)O(13)(OMe)(4)(NO)](2)[Mn(CO)(3)](2)] is obtained under reflux. The former transforms into the latter under reflux in methanol in the presence of sodium bromide; this involves the migration of the fac-[Mn(CO)(3)](+) moiety from a basal kappa(2)O coordination site to a lateral kappa(3)O site. Oxidation and decarbonylation of manganese carbonyl species as well as degradation of the oxonitrosyl starting material and reaggregation of oxo(methoxo)molybdenum fragments occur in non-deareated MeOH, and both (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(16)(OMe)(2)](2)[Mn(CO)(3)](2)] and (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(13)(OMe)(4)(NO)](2)] as well as (nBu(4)N)(2)[MnBr[Mo(5)O(13)(OMe)(4)(NO)]] have been obtained in this way. The rhenium analogue (nBu(4)N)(2)[Re(CO)(3)(H(2)O)[Mo(5)O(13)(OMe)(4)(NO)]] has also been synthesized. The crystal structures of (nBu(4)N)(2)[Re(CO)(3)(H(2)O)[Mo(5)O(13)(OMe)(4)(NO)]], (nBu(4)N)(3)[Na[Mo(5)O(13)(OMe)(4)(NO)](2)[Mn(CO)(3)](2)], (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(16)(OMe)(2)](2)[Mn(CO)(3)](2)], (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(13)(OMe)(4)(NO)](2)] and (nBu(4)N)(2)[MnBr[Mo(5)O(13)(OMe)(4)(NO)]] have been determined.  相似文献   

11.
Ni ZH  Kou HZ  Zhang LF  Ni WW  Jiang YB  Cui AL  Ribas J  Sato O 《Inorganic chemistry》2005,44(26):9631-9633
A new cyanide-containing building block K[Fe(pcq)(CN)(3)] [1; pcq(-) = 8-(pyridine-2-carboxamido)quinoline anion] containing a low-spin Fe(III) center with three cyanide groups in a meridional arrangement has been successfully designed and synthesized. Three cyanide-bridged trinuclear Fe(III)(2)Mn(II) complexes, [Fe(pcq)(CN)(3)](2)[Mn(CH(3)OH)(2)(H(2)O)(2)].2H(2)O (2), [Fe(pcq)(CN)(3)](2)[Mn(bipy)(2)].CH(3)OH.2H(2)O (3), and [Fe(pcq)(CN)(3)](2)[Mn(phen)(2)].CH(3)OH.2H(2)O (4), have been synthesized and structurally characterized. The magnetic susceptibilities of the three heterometallic complexes have been investigated.  相似文献   

12.
The syntheses and structural and physical characterization of the compounds [Cu(bipy)(2)](2)[Mo(CN)(8)].5H(2)O. CH(3)OH (1) with bipy = 2,2'-bipyridine and M(II)(2)[Mo(IV)(CN)(8)].xH(2)O (2 with M = Cu, x = 7.5; 3 with M = Mn, x = 9.5) are presented. 1 crystallizes in the triclinic space group P1; (a = 11.3006(4) A, b = 12.0886(5) A, c = 22.9589(9) A, alpha = 81.799(2) degrees, beta = 79.787(2) degrees, gamma = 62.873(2) degrees, Z = 2). The structure of 1 consists of neutral trinuclear molecules in which a central [Mo(CN8)](4-) anion is linked to two [Cu(bipy)2](2+) cations through two cyanide bridges. 2 crystallizes poorly, and hence, structural information has been obtained from the wide-angle X-ray scattering (WAXS) technique, by comparison with 3 and Fe(II)(2)(H(2)O)(4)[Mo(IV)(CN)(8)].4H(2)O whose X-ray structure has been previously solved. 2, 3, and Fe(II)(2)(H(2)O)(4)[Mo(IV)(CN)(8)].4H(2)O form extended networks with all the cyano groups acting as bridges. The magnetic properties have shown that 1 and 2 behave as paramagnets. Under irradiation with light, they exhibit important modifications of their magnetic properties, with the appearance at low temperature of magnetic interactions. For 1 the modifications are irreversible, whereas they are reversible for 2 after cycling in temperature. These photomagnetic effects are thought to be caused by the conversion of Mo(IV) (diamagnetic) to Mo(V)(paramagnetic) through a photooxidation mechanism for 1 and a photoinduced electron transfer in 2. These results have been correlated with the structural features.  相似文献   

13.
The photophysical properties of acetonitrile solutions of [Ru(bpy)(3)](2+) and [S(2)Mo(18)O(62)](4-) are described. We discuss evidence for ion cluster formation in solution and the observation that despite the strong donor ability of the excited state of [Ru(bpy)(3)](2+) and its inherent photolability, adducts with [S(2)Mo(18)O(62)](4-) were photostable. Photophysical studies suggest that the quenching of the [Ru(bpy)(3)](2+) excited state by [S(2)Mo(18)O(62)](4-) occurs via a static mechanism and that binding is largely electrostatic in nature. Evidence is provided from difference spectroscopy and luminescence excitation spectroscopy for good electronic communication between [Ru(bpy)(3)](2+) and [S(2)Mo(18)O(62)](4-) with the presence of a novel, luminescent, inter-ion charge-transfer transition. The identity of the transition is confirmed by resonance Raman spectroscopy.  相似文献   

14.
The reaction of [Mo(3)S(4)(H(2)O)(9)](4+) with Bi(III) in the presence of BH(4)(-) (rapid), or with Bi metal shot (3-4 days), gives a heterometallic cluster product. The latter has been characterized as the corner-shared double cube [Mo(6)BiS(8)(H(2)O)(18)](8+) by the following procedures. Analyses by ICP-AES confirm the Mo:Bi:S ratio as 6:1:8. Elution from a cation-exchange column by 4 M Hpts (Hpts = p-toluenesulfonic acid), but not 2 M Hpts (or 4 M HClO(4)), is consistent with a high charge. The latter is confirmed as 8+ from the 3:1 stoichiometries observed for the oxidations with [Co(dipic)(2)](-) or [Fe(H(2)O)(6)](3+) yielding [Mo(3)S(4)(H(2)O)(9)](4+) and Bi(III) as products. Heterometallic clusters [Mo(6)MS(8)(H(2)O)(18)](8+) are now known for M = Hg, In, Tl, Sn, Pb, Sb, and Bi and are a feature of the P-block main group metals. The color of [Mo(6)BiS(8)(H(2)O)(18)](8+) in 2.0 M Hpts (turquoise) is different from that in 2.0 M HCl (green-blue). Kinetic studies (25 degrees C) for uptake of a single chloride k(f) = 0.80 M(-)(1) s(-)(1), I = 2.0 M (Hpts), and the high affinity for Cl(-) (K > 40 M(-)(1)) exceeds that observed for complexing at Mo. A specific heterometal interaction of the Cl(-) not observed in the case of other double cubes is indicated. The Cl(-) can be removed by cation-exchange chromatography with retention of the double-cube structure. Kinetic studies with [Co(dipic)(2)](-) and hexaaqua-Fe(III) as oxidants form part of a survey of redox properties of this and other clusters. The Cl(-) adduct is more readily oxidized by [Co(dipic)(2)](-) (factor of approximately 10) and is also more air sensitive.  相似文献   

15.
[NH(4)](2)Mn(3)(H(2)O)(4)[Mo(CN)(7)](2).4H(2)O (1) has been synthesized by slow diffusion of aqueous solutions containing K(4)[Mo(CN)(7)].2H(2)O, [Mn(H(2)O)(6)](NO(3))(2), and (NH(4))NO(3). Compound 1 crystallizes in the monoclinic C2/c space group. The basic motif of the three-dimensional structure consists of a Mo1-Mn1 gridlike sheet parallel to the bc plane. Two of these sheets are connected through CN-Mn2-NC linkages to form a bilayer reminiscent of the K(2)Mn(3)(H(2)O)(6)[Mo(CN)(7)](2).6H(2)O (2) two-dimensional structure. In 1, [NH(4)](+) cations allow these bilayers to be connected through direct Mo1-CN-Mn1 bridges to form a three-dimensional network, whereas in 2, they are isolated by (H(2)O)K(+) cations. As shown by the magnetic measurements, this increase of dimensionality by counterion substitution induces an enhancement of the ferrimagnetic critical temperature from 39 K in 2 to 53 K in 1.  相似文献   

16.
A reinvestigation of the redox behavior of the [Fe(3)(&mgr;(3)-S)(CO)(9)](2)(-) dianion led to the isolation and characterization of the new [Fe(5)S(2)(CO)(14)](2)(-), as well as the known [Fe(6)S(6)(CO)(12)](2)(-) dianion. As a corollary, new syntheses of the [Fe(3)S(CO)(9)](2)(-) dianion are also reported. The [Fe(5)S(2)(CO)(14)](2)(-) dianion has been obtained by oxidative condensation of [Fe(3)S(CO)(9)](2)(-) induced by tropylium and Ag(I) salts or SCl(2), or more straightforwardly through the reaction of [Fe(4)(CO)(13)](2)(-) with SCl(2). The [Fe(6)S(6)(CO)(12)](2)(-) dianion has been isolated as a byproduct of the synthesis of [Fe(3)S(CO)(9)](2)(-) and [Fe(5)S(2)(CO)(14)](2)(-) or by reaction of [Fe(4)(CO)(13)](2)(-) with elemental sulfur. The structures of [N(PPh(3))(2)](2)[Fe(5)S(2)(CO)(14)] and [N(PPh(3))(2)](2)[Fe(6)S(6)(CO)(12)] were determined by single-crystal X-ray diffraction analyses. Crystal data: for [N(PPh(3))(2)](2)[Fe(5)S(2)(CO)(14)], monoclinic, space group P2(1)/c (No. 14), a = 24.060(5), b = 14.355(6), c = 23.898(13) ?, beta = 90.42(3) degrees, Z = 4; for [N(PPh(3))(2)](2)[Fe(6)S(6)(CO)(12)], monoclinic, space group C2/c (No. 15), a = 34.424(4), b = 14.081(2), c = 19.674(2) ?, beta = 115.72(1) degrees, Z = 4. The new [Fe(5)S(2)(CO)(14)](2)(-) dianion shows a "bow tie" arrangement of the five metal atoms. The two Fe(3) triangles sharing the central Fe atom are not coplanar and show a dihedral angle of 55.08(3) degrees. Each Fe(3) moiety is capped by a triply bridging sulfide ligand. The 14 carbonyl groups are all terminal; two are bonded to the unique central atom and three to each peripheral iron atom. Protonation of the [Fe(5)S(2)(CO)(14)](2)(-) dianion gives reversibly rise to the corresponding [HFe(5)S(2)(CO)(14)](-) monohydride derivative, which shows an (1)H-NMR signal at delta -21.7 ppm. Its further protonation results in decomposition to mixtures of Fe(2)S(2)(CO)(6) and Fe(3)S(2)(CO)(9), rather than formation of the expected H(2)Fe(5)S(2)(CO)(14) dihydride. Exhaustive reduction of [Fe(5)S(2)(CO)(14)](2)(-) with sodium diphenyl ketyl progressively leads to fragmentation into [Fe(3)S(CO)(9)](2)(-) and [Fe(CO)(4)](2)(-), whereas electrochemical, as well as chemical oxidation with silver or tropylium tetrafluoroborate, in dichloromethane, generates the corresponding [Fe(5)S(2)(CO)(14)](-) radical anion which exhibits an ESR signal at g = 2.067 at 200 K. The electrochemical studies also indicated the existence of a subsequent one-electron anodic oxidation which possesses features of chemical reversibility in dichloromethane but not in acetonitrile solution. A reexamination of the electrochemical behavior of the [Fe(3)S(CO)(9)](2)(-) dianion coupled with ESR monitoring enabled the spectroscopic characterization of the [Fe(3)S(CO)(9)](-) radical monoanion and demonstrated its direct involvement in the generation of the [Fe(5)S(2)(CO)(14)](n)()(-) (n = 0, 1, 2) system.  相似文献   

17.
By interaction of MoX(3)(THF)(3) with [Cat]X in THF, the salts [Cat][MoX(4)(THF)(2)] have been synthesized [X = I, Cat = PPh(4), NBu(4), NPr(4), (Ph(3)P)(2)N; X = Br, Cat = NBu(4), PPh(4) (Ph(3)P)(2)N]. Mixed-halide species [MoX(3)Y(THF)(2)](-) (X, Y = Cl, Br, I) have also been generated in solution and investigated by (1)H-NMR. When the tetraiodo, tetrabromo, and mixed bromoiodo salts are dissolved in CH(2)Cl(2), clean loss of all coordinated THF is observed by (1)H-NMR. On the other hand, [MoCl(4)(THF)(2)](-) loses only 1.5 THF/Mo. The salts [Cat](3)[Mo(3)X(12)] (X = Br, I) have been isolated from [Cat][MoX(4)(THF)(2)] or by running the reaction between MoX(3)(THF)(3) and [Cat]X directly in CH(2)Cl(2). The crystal structure of [PPh(4)](3)[Mo(3)I(12)] exhibits a linear face-sharing trioctahedron for the trianion: triclinic, space group P&onemacr;; a = 11.385(2), b = 12.697(3), c = 16.849(2) ?; alpha = 76.65(2), beta = 71.967(12), gamma = 84.56(2) degrees; Z = 1; 431 parameters and 3957 data with I > 2sigma(I). The metal-metal distance is 3.258(2) ?. Structural and magnetic data are consistent with the presence of a metal-metal sigma bond order of (1)/(2) and with the remaining 7 electrons being located in 7 substantially nonbonding orbitals. The ground state of the molecule is predicted to be subject to a Jahn-Teller distortion, which is experimentally apparent from the nature of the thermal ellipsoid of the central Mo atom. The [Mo(3)X(12)](3)(-) ions reacts with phosphines (PMe(3), dppe) to form products of lower nuclearity by rupture of the bridging Mo-X bonds.  相似文献   

18.
The [3 + 1] reaction of [W(3)S(4)(H(2)O)(9)](4+) with [W(CO)(6)] in 2 M HCl under hydrothermal conditions (130 degrees C) gives the [W(4)S(4)(H(2)O)(12)](6+) cuboidal cluster, reduction potential 35 mV vs NHE (6+/5+ couple). The reduced form is obtained by controlled potential electrolysis. X-ray crystal structure was determined for (Me(2)NH(2))(6)[W(4)S(4)(NCS)(12)].0.5H(2)O. The W-W and W-S bond lengths are 2.840 and 2.379 A, respectively.  相似文献   

19.
Yam VW  Hui CK  Yu SY  Zhu N 《Inorganic chemistry》2004,43(2):812-821
A series of tetraalkynylplatinate(II) complexes, (NBu(4))(2)[Pt(Ctbd1;CR)(4)] (R = C(6)H(4)N-4, C(6)H(4)N-3, and C(6)H(3)N(2)-5), and the diynyl analogues, (NBu(4))(2)[Pt(Ctbd1;CCtbd1;CR)(4)] (R = C(6)H(5) and C(6)H(4)CH(3)-4), have been synthesized. These complexes displayed intense photoluminescence, which was assigned as metal-to-ligand charge transfer (MLCT) transitions. Reaction of (Bu(4)N)(2)[Pt(Ctbd1;CC(5)H(4)N-4)(4)] with 4 equiv of [Pt((t)Bu(3)trpy)(MeCN)](OTf)(2) in methanol did not yield the expected pentanuclear platinum product, [Pt(Ctbd1;CC(5)H(4)N)(4)[Pt((t)Bu(3)trpy)](4)](OTf)(6), but instead afforded a strongly luminescent 4-ethynylpyridine-bridged dinuclear complex, [Pt((t)Bu(3)trpy)(Ctbd1;CC(5)H(4)N)Pt((t)Bu(3)trpy)](PF(6))(3,) which has been structurally characterized. The emission origin is assigned as derived from states of predominantly (3)MLCT [d(pi)(Pt) --> pi((t)Bu(3)trpy)] character, probably mixed with some intraligand (3)IL [pi --> pi(Ctbd1;C)], and ligand-to-ligand charge transfer (3)LLCT [pi(Ctbd1;C) --> pi((t)()Bu(3)trpy)] character. On the other hand, reaction of (Bu(4)N)(2)[Pt(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(4)] with [Ag(MeCN)(4)][BF(4)] gave a mixed-metal aggregate, [Pt(2)Ag(4)(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(8)(THF)(4)]. The crystal structure of [Pt(2)Ag(4)(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(8)(THF)(4)] has also been determined. A comparison study of the spectroscopic properties of the hexanuclear platinum-silver complex with its precursor complex has been made and their spectroscopic origins were suggested.  相似文献   

20.
Six Mo(IV)-Cu(II) complexes, [Cu(tpa)](2)[Mo(CN)(8)]·15H(2)O (1, tpa = tris(2-pyridylmethyl)amine), [Cu(tren)](2)[Mo(CN)(8)]·5.25H(2)O (2, tren = tris(2-aminoethyl)amine), [Cu(en)(2)][Cu(0.5)(en)][Cu(0.5)(en)(H(2)O)][Mo(CN)(8)]·4H(2)O (3, en = ethylenediamine), [Cu(bapa)](3)[Mo(CN)(8)](1.5)·12.5H(2)O (4, bapa = bis(3-aminopropyl)amine), [Cu(bapen)](2)[Mo(CN)(8)]·4H(2)O (5, bapen = N,N'-bis(3-aminopropyl)ethylenediamine), and [Cu(pn)(2)][Cu(pn)][Mo(CN)(8)]·3.5H(2)O (6, pn = 1,3-diaminopropane), were synthesized and characterized. Single-crystal X-ray diffraction analyses show that 1-6 have different structures varying from trinuclear clusters (1-2), a one-dimensional belt (3), two-dimensional grids (4-5), to a three-dimensional structure (6). Magnetic and ESR measurements suggest that 1-6 exhibit thermally reversible photoresponsive properties on UV light irradiation through a Mo(IV)-to-Cu(II) charge transfer mechanism. A trinuclear compound [Cu(II)(tpa)](2)[Mo(V)(CN)(8)](ClO(4)) (7) was synthesized as a model of the photoinduced intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号