首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel charge-controlled memcapacitor 3D chaotic oscillator with two unstable equilibriums is proposed. Various dynamic properties of the proposed system are derived and investigated to show the existence of chaotic oscillations. Fractional-order analysis of the chaotic oscillator shows that the maximum value for the largest positive Lyapunov exponent is exhibited in fractional order. Adomian decomposition method is used to discretize the fractional-order system. Field-programmable gate arrays are used to realize the proposed oscillator. In addition, random number generator is designed by employing this novel chaotic system in its fractional-order form.  相似文献   

2.
This paper deals with a class of three-dimensional autonomous nonlinear systems which have potential applications in secure communications, and investigates the localization problem of compact invariant sets of a class of Lorenz-like chaotic systems which contain T system with the help of iterative theorem and Lyapunov function theorem. Since the Lorenz-like chaotic system does not have y in the second equation, the approach used to the Lorenz system cannot be applied to the Lorenz-like chaotic system. We overcome this difficulty by introducing a cross term and get an interesting result, which includes the most interesting case of the chaotic attractor of the Lorenz-like systems. Furthermore, the results obtained in this paper are applied to study complete chaos synchronization. Finally, numerical simulations show the effectiveness of the proposed scheme.  相似文献   

3.
Certain deterministic nonlinear systems may show chaotic behavior. We consider the motion of qualitative information and the practicalities of extracting a part from chaotic experimental data. Our approach based on a theorem of Takens draws on the ideas from the generalized theory of information known as singular system analysis. We illustrate this technique by numerical data from the chaotic region of the chaotic experimental data. The method of the singular-value decomposition is used to calculate the eigenvalues of embedding space matrix. The corresponding concrete algorithm to calculate eigenvectors and to obtain the basis of embedding vector space is proposed in this paper. The projection on the orthogonal basis generated by eigenvectors of timeseries data and concrete paradigm are also provided here. Meanwhile the state space reconstruction technology of different kinds of chaotic data obtained from dynamical system has also been discussed in detail. The project supported by the National Natural Science Foundation of China (19672043)  相似文献   

4.
Based on the theory of stabilization of fractional-order LTI interval systems, a simple controller for stabilization of a class of fractional-order chaotic systems is proposed in this paper. We consider the structure of the chaotic systems as fractional-order LTI interval systems due to the limited amplitude of chaotic trajectories. We introduce a simple feedback controller for the interval system and then, based on a recently established theorem for stabilization of interval systems, we reach to a linear matrix inequality (LMI) problem. Solving the LMI yields an appropriate decoupling feedback control law which suffices to bring the chaotic trajectories to the origin. Several illustrative examples are given which show the effectiveness of the method.  相似文献   

5.
We introduce a simple chaotic system that contains one multiplier and one quadratic term. The system is similar to the generalized Lorenz system but is not topologically equivalent. The properties of the proposed chaotic system are examined by theoretical and numerical analysis. An analog chaotic circuit is implemented that realizes the chaotic system for the verification of its attractor. Furthermore, we propose a robust function projective synchronization using time delay estimation. A numerical simulation of synchronization between the proposed system and the Lorenz system demonstrates that the proposed approach provides fast and robust synchronization even in the presence of unknown parameter variations and disturbances.  相似文献   

6.
This letter proposes a new 3D quadratic autonomous chaotic system which displays an extremely complicated dynamical behavior over a large range of parameters. The new chaotic system has five real equilibrium points. Interestingly, this system can generate one-wing, two-wing, three-wing and four-wing chaotic attractors and periodic motion with variation of only one parameter. Besides, this new system can generate two coexisting one-wing and two coexisting two-wing attractors with different initial conditions. Furthermore, the transient chaos phenomenon happens in the system. Some basic dynamical behaviors of the proposed chaotic system are studied. Furthermore, the bifurcation diagram, Lyapunov exponents and Poincaré mapping are investigated. Numerical simulations are carried out in order to demonstrate the obtained analytical results. The interesting findings clearly show that this is a special strange new chaotic system, which deserves further detailed investigation.  相似文献   

7.
A novel memristive chaotic circuit is proposed by replacing the Chua’s diode in modified Chua’s circuit with a smooth active memristor, and the corresponding memristive model is analyzed and validated. The equilibrium point set, dissipativity and stability of this new chaotic circuit are developed theoretically. The dynamic characteristics for the new system are presented by means of phase diagrams, Lyapunov exponents, bifurcation diagrams and Poincaré maps. The coexistence of the memristive system is carried out from the perspective of asymmetric coexistence and symmetry coexistence. In addition, the coexistence of multiple states is studied by a more direct method with initial value as the system variable to gain a more intuitive observation. The circuit model of the memristive chaotic system is designed through Multisim simulation software. Finally, the memristive chaotic sequence is used to encrypt the image, and the influence of multistability on the encryption is investigated by the histogram, correlation and key sensitivity. The results show that the proposed new memristive chaotic system has high security.  相似文献   

8.
This paper addresses the problem of optimization of the synchronization of a chaotic modified Rayleigh system. We first introduce a four-dimensional autonomous chaotic system which is obtained by the modification of a two-dimensional Rayleigh system. Some basic dynamical properties and behaviors of this system are investigated. An appropriate electronic circuit (analog simulator) is proposed for the investigation of the dynamical behavior of the proposed system. Correspondences are established between the coefficients of the system model and the components of the electronic circuit. Furthermore, we propose an optimal robust adaptive feedback which accomplishes the synchronization of two modified Rayleigh systems using the controllability functions method. The advantage of the proposed scheme is that it takes into account the energy wasted by feedback coupling and the closed loop performance on synchronization. Also, a finite horizon is explicitly computed such that the chaos synchronization is achieved at an established time. Numerical simulations are presented to verify the effectiveness of the proposed synchronization strategy. Pspice analog circuit implementation of the complete master–slave controller system is also presented to show the feasibility of the proposed scheme.  相似文献   

9.
In this paper, we construct a novel four dimensional fractional-order chaotic system. Compared with all the proposed chaotic systems until now, the biggest difference and most attractive place is that there exists no equilibrium point in this system. Those rigorous approaches, i.e., Melnikov??s and Shilnikov??s methods, fail to mathematically prove the existence of chaos in this kind of system under some parameters. To reconcile this awkward situation, we resort to circuit simulation experiment to accomplish this task. Before this, we use improved version of the Adams?CBashforth?CMoulton numerical algorithm to calculate this fractional-order chaotic system and show that the proposed fractional-order system with the order as low as 3.28 exhibits a chaotic attractor. Then an electronic circuit is designed for order q=0.9, from which we can observe that chaotic attractor does exist in this fractional-order system. Furthermore, based on the final value theorem of the Laplace transformation, synchronization of two novel fractional-order chaotic systems with the help of one-way coupling method is realized for order q=0.9. An electronic circuit is designed for hardware implementation to synchronize two novel fractional-order chaotic systems for the same order. The results for numerical simulations and circuit experiments are in very good agreement with each other, thus proving that chaos exists indeed in the proposed fractional-order system and the one-way coupling synchronization method is very effective to this system.  相似文献   

10.
An adaptive synchronization control method is proposed for the chaotic brushless DC motors based on the LaSalle invariance principle. We show explicitly with numerical proofs that the synchronization error system between the driving and response systems can be asymptotically stable using only a single variable feedback. The present controller is simple in comparison with previous methods. Computer simulation results show that the proposed method is effective.  相似文献   

11.
Based on Rikitake system, a new chaotic system is discussed. Some basic dynamical properties, such as equilibrium points, Lyapunov exponents, fractal dimension, Poincaré map, bifurcation diagrams and chaotic dynamical behaviors of the new chaotic system are studied, either numerically or analytically. The obtained results show clearly that the system discussed is a new chaotic system. By utilizing the fractional calculus theory and computer simulations, it is found that chaos exists in the new fractional-order three-dimensional system with order less than 3. The lowest order to yield chaos in this system is 2.733. The results are validated by the existence of one positive Lyapunov exponent and some phase diagrams. Further, based on the stability theory of the fractional-order system, projective synchronization of the new fractional-order chaotic system through designing the suitable nonlinear controller is investigated. The proposed method is rather simple and need not compute the conditional Lyapunov exponents. Numerical results are performed to verify the effectiveness of the presented synchronization scheme.  相似文献   

12.
Based on one drive system and one response system synchronization model, a new type of combination–combination synchronization is proposed for four identical or different chaotic systems. According to the Lyapunov stability theorem and adaptive control, numerical simulations for four identical or different chaotic systems with different initial conditions are discussed to show the effectiveness of the proposed method. Synchronization about combination of two drive systems and combination of two response systems is the main contribution of this paper, which can be extended to three or more chaotic systems. A universal combination of drive systems and response systems model and a universal adaptive controller may be designed to our intelligent application by our synchronization design.  相似文献   

13.
The complex nonlinear systems appear in many important fields of physics and engineering, which are very useful for cryptography and secure communication. This paper investigates adaptive generalized function projective synchronization (AGFPS) between two different dimensional chaotic complex systems with fully or partially unknown parameters via both reduced order and increased order. Based on the Lyapunov stability theorem and adaptive control technique, a general adaptive controller with corresponding parameter update rule is constructed to achieve AGFPS between two nonidentical chaotic complex systems with distinct orders, and identify the unknown parameters simultaneously. This scheme is then applied to obtain AGFPS between the hyperchaotic complex Lü system and the chaotic complex Lorenz system with fully unknown parameters, and between the uncertain chaotic complex Chen system and the uncertain hyperchaotic complex Lorenz system, respectively. Corresponding simulations results are performed to show the feasibility and effectiveness of the proposed synchronization method.  相似文献   

14.
This article introduces a new chaotic system of 4-D autonomous ordinary differential equations, which has no equilibrium. This system shows a hyper-chaotic attractor. There is no sink in this system as there is no equilibrium. The proposed system is investigated through numerical simulations and analyses including time phase portraits, Lyapunov exponents, and Poincaré maps. There is little difference between this chaotic system and other chaotic systems with one or several equilibria shown by phase portraits, Lyapunov exponents and time series methods, but the Poincaré maps show this system is a chaotic system with more complicated dynamics. Moreover, the circuit realization is also presented.  相似文献   

15.
In this work, a new three-dimensional autonomous chaotic system has been introduced by modifying a hybrid optical system. The single quadratic nonlinearity is replaced by a single cubic nonlinearity; the new system can display two 1-scroll chaotic attractors simultaneously or one 2-scroll chaotic attractor. The bifurcation diagram is obtained and Lyapunov spectrum is calculated for the proposed system. The results show that the new system exhibits rich complexity features such as stable, periodic, and chaotic dynamics.  相似文献   

16.
This paper introduces a novel three-dimensional autonomous chaotic system by adding a quadratic cross-product term to the first equation and modifying the state variable in the third equation of a chaotic system proposed by Cai et al. (Acta Phys. Sin. 56:6230, 2007). By means of theoretical analysis and computer simulations, some basic dynamical properties, such as Lyapunov exponent spectrum, bifurcations, equilibria, and chaotic dynamical behaviors of the new chaotic system are investigated. Furthermore, hybrid function projective synchronization (HFPS) of the new chaotic system is studied by employing three different synchronization methods, i.e., adaptive control, system coupling and active control. The proposed approaches are applied to achieve HFPS between two identical new chaotic systems with fully uncertain parameters, HFPS in coupled new chaotic systems, and HFPS between the integer-order new chaotic system and the fractional-order Lü chaotic system, respectively. Corresponding numerical simulations are provided to validate and illustrate the analytical results.  相似文献   

17.
Two simple autonomous chaotic electronic circuits have been proposed in this paper. The core of each of the circuits consists of a single amplifier biquad (SAB). We have proposed two configurations of converting this SAB into chaotic oscillators using suitable passive nonlinear element and a storage element in the form of an inductor. The mathematical models of the proposed chaotic circuits have been constructed, which are fourth order autonomous nonlinear differential equations. The behavior of the proposed circuits has been investigated through numerical simulations, Spice-based circuit simulations and electronic hardware experiments and they agree well with each other. It has been found that both the circuits show complex behaviors like bifurcations and chaos for a certain range of circuit parameters.  相似文献   

18.
In this paper, we focus on the synchronization between integer-order chaotic systems and a class of fractional-order chaotic system using the stability theory of fractional-order systems. A new fuzzy sliding mode method is proposed to accomplish this end for different initial conditions and number of dimensions. Furthermore, three examples are presented to illustrate the effectiveness of the proposed scheme, which are the synchronization between a fractional-order chaotic system and an integer-order Liu chaotic system, the synchronization between a fractional-order hyperchaotic system based on Chen??s system and an integer-order hyperchaotic system based upon the Lorenz system, and the synchronization between a fractional-order hyperchaotic system based on Chen??s system, and an integer-order Liu chaotic system. Finally, numerical results are presented and are in agreement with theoretical analysis.  相似文献   

19.
A chaotic image encryption algorithm based on perceptron model   总被引:2,自引:0,他引:2  
Based on the high-dimension Lorenz chaotic system and perceptron model within a neural network, a chaotic image encryption system with a perceptron model is proposed. This paper describes the algorithm flow in detail, and analyses the cryptographic security. The experimental results show that this algorithm has high security, and strong resistance to the existing attack methods.  相似文献   

20.
Anticipating synchronization is investigated in nonidentical chaotic systems unidirectionally coupled in a master-slave configuration without a time-delay feedback. We show that if the parameters of chaotic master and slave systems are mismatched in such a way that the mean frequency of a free slave system is greater than the mean frequency of a master system, then the phase synchronization regime can be achieved with the advanced phase of the slave system. In chaotic neural systems, this leads to the anticipating spike synchronization: unidirectionally coupled neurons synchronize in such a way that the slave neuron anticipates the chaotic spikes of the master neuron. We demonstrate our findings with coupled Rössler systems as well as with two different models of coupled neurons, namely, the Hindmarsh–Rose neurons and the adaptive exponential integrate-and-fire neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号