首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrical conductivity, thermoelectric power, and dielectric properties of polyaniline doped by boric acid (PANI‐B) have been investigated. The room temperature electrical conductivity of PANI‐B was found to be 1.02 × 10?4 S cm?1. The thermoelectric power factor for the polymer was found to be 0.64 µW m?1 K?2. The optical band gap of the PANI‐B was determined by optical absorption method, and the PANI‐B has a direct optical band gap of 3.71 eV. The alternating charge transport mechanism of the polymer is based on the correlated barrier hopping (CBH) model. The imaginary part of the dielectric modulus for the PANI‐B suggests a temperature dependent dielectric relaxation mechanism. Electrical conductivity and thermoelectric power results indicate that the PANI‐B is an organic semiconductor with thermally activated conduction mechanism. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
The electrical characteristics of the ITO/polyaniline (PANI) doped boron trifloride (BF3)/Al Schottky diode have been investigated by current–voltage (IV) and capacitance–voltage (CV) methods. The diode indicates a rectification behavior with the ideality factor of 4.78. An ideality factor higher than unity can result from the interface state and electronic properties of the PANI doped BF3 organic semiconductor. The barrier height of the diode was determined from both IV and CV characteristics. The barrier height obtained from the CV measurements is higher than that obtained from the IV measurements. At higher forward bias voltages, the space charge‐limited current is the dominant transport mechanism, whereas at reverse bias voltages, the current flow in the ITO/PANIBF3/Al diode is controlled by Schottky emission mechanism. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
A simple method was used to synthesize the hybrid nanocomposites consisting of the functionalized multiwalled carbon nanotube composites (MWCNTs) with the polyaniline incorporated silver nanoparticles (a-MWCNT/PANI-Ag) through an emulsion polymerization at room temperature in order to enhance the electrical conductivity of polyaniline. The electrical conductivity of the composite with the incorporated Ag nanoparticles was 5% higher than the same weight percent for the composite without Ag nanoparticles, and the thermal stability was dramatically increased from 54% for the composite (a-MWCNT/PANI) to 69% through the incorporation of the Ag nanoparticles at 830°C. Additionally, the advantages of the Ag nanoparticles, including the improved electrical and thermal properties without damage to the polyaniline structure, were confirmed using FTIR and Raman spectroscopy.  相似文献   

4.
The ZnO and gallium-doped ZnO nanoparticles (NPs) were synthesized by simple chemical method and used for the fabrication of p-polyaniline/n-ZnO heterostructures devices in which polyaniline was deposited by plasma-enhanced polymerization. The increment in the crystallite sizes of gallium doped ZnO nanoparticles from ~21.85 nm to ~32.39 nm indicated the incorporation of gallium ion into the ZnO nanoparticles. The surface and structural studies investigated the participation of protonated N atom for the bond formation between polyaniline and gallium-ZnO through partial hydrogen bonding. Compared to a Pt/polyaniline/ZnO diode, the fabricated Pt/polyaniline/gallium-ZnO heterostructure diode exhibited good rectifying behavior with Current–Voltage characteristics of improved saturation current, low ideality factor, and a high barrier height might due to the efficient charge conduction via gallium ion at the junction of the polyaniline/gallium doped-ZnO interface.
Figure
(a) Schematic illustration and (b) I-V characteristics of Pt/PANI/Ga-ZnO heterostructure device. The heterostructure device is obtained by a top Pt layer on PECVD deposited PANI/Ga-ZnO electrodes. The fabricated Pt/PANI/Ga-ZnO heterostructure device displays non-linear and rectifying behavior of I–V curve due to the existence of Schottky barrier via a Schottky contact at the interfaces of Pt layer and PANI/Ga-ZnO thin film layer.  相似文献   

5.
The composite of polyaniline (PANI) and multiwall carbon nanotube carboxylated through acid treatment (c‐MWCNT) was synthesized by chemical oxidative polymerization in an inverse emulsion system. The resultant composites were compared with products from aqueous emulsion polymerization to observe the improvements in electrical conductivity, structural properties, and thermal stability obtained by this synthetic method. Prior to the inverse emulsion polymerization, MWCNT was treated with a strong acid mixture to be functionalized with carboxylic acid groups. Carboxylic acid groups on surfaces induced selective dispersibility between polar and nonpolar solvents because of the increase of hydrophilicity. As the content of c‐MWCNT was increased, the electrical conductivity was increased by a charge transport function from the intrinsic electrical conductivity of MWCNT and the formation of a highly ordered dense structure of PANI molecules on the surface of c‐MWCNT. The images observed with electron spectroscopy showed the capping of c‐MWCNT with PANI. The growth of additional ordered structures of PANI/c‐MWCNT composite, which was observed through wide‐angle X‐ray diffraction patterns, supported the capping by PANI. It was observed that the doping of the composite had a significant relationship with the concentration of dodecylbenzenesulfonic acid (DBSA). The thermal stability of PANI composite was improved by the addition of c‐MWCNT; this was thought to be related with structure ordering by inverse emulsion polymerization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2255–2266, 2008  相似文献   

6.
Composite material formed from a mesoporous aluminosilicate, Na-AlMCM-41, with conducting polyaniline (PANI) has been synthesized by an in situ polymerization technique. Studies of aniline adsorption over mesoporous Na-AlMCM-41 synthesized in our laboratory allowed us to find the modes in which aniline interacts with the active sites of Na-AlMCM-41. In order to obtain the best reaction conditions to polymerize aniline onto Na-AlMCM-41, aniline was first polymerized to produce pure PANI. Hence, the oxidative in situ polymerization was carried out by two procedures, differing in the polymerization time and in static or stirring conditions. Studies of infrared spectroscopy and UV-vis spectroscopy indicated that higher polymerization time and static conditions allowed us to obtain mainly polyaniline in emeraldine form on the host. The N(2) isotherm of the polyaniline/Na-AlMCM-41 composite (PANI/MCM) indicated that the shape was similar to that of MCM, but the shift to saturation transition to lower partial pressure shows that the channels are occupied by PANI and they are now narrowed. The thermal properties of PANI, Na-AlMCM-41, and composite were investigated by TGA analyses and we found that the polymer shows higher thermal stability when it is forming the composite. Scanning electron microscopy indicated that PANI is not on the outer surface of the host. Conductivity studies show that PANI/Na-AlMCM-41 exhibits semiconductor behavior at room temperature and its conductivity was 7.0 x 10(-5) S/cm, smaller than that of pure polyaniline. PANI/Na-AlMCM-41 conductivity shows an increase as temperature increases. Magnetic measurements at room temperature confirmed that the composite has paramagnetic behavior; at lower temperatures the composite became diamagnetic.  相似文献   

7.
Polyaniline (PANI) and silver doped polyaniline (Ag/PANI) thin films were deposited on stainless steel substrates by a dip coating technique. To study the effect of doping concentration of Ag on the specific capacitance of PANI the concentration of Ag was varied from 0.3 to 1.2 weight percent. Fourier transform-infrared and Fourier transform-Raman spectroscopy, and energy dispersion X-ray techniques were used for the phase identification and determination of the doping content in the PANI films, respectively. The surface morphology of the films was examined by Field Emission Scanning Electron Microscopy, which revealed a nanofiber like structure for PANI and nanofibers with bright spots of Ag particles for the Ag/PANI films. There was decrease in the room temperature electrical resistivity of the Ag/PANI films of the order of 10(2) with increasing Ag concentration. The supercapacitive behavior of the electrodes was tested in a three electrode system using 1.0 M H(2)SO(4) electrolyte. The specific capacitance increased from 285 F g(-1) (for PANI) to 512 F g(-1) for Ag/PANI at 0.9 weight percent doping of Ag, owing to the synergic effect of PANI and silver nanoparticles. This work demonstrates a simple strategy of improving the specific capacitance of polymer electrodes and may also be easily adopted for other dopants.  相似文献   

8.
This study focused on the structural, optical and electrical features of chitosan organic layer obtained by spin coating technique both on glass and n-Si substrates. XRD results indicated that chitosan has polycrystalline orthorhombic nature. While optical transmittance spectrum of the chitosan organic layer exhibited an increasing tendency in the visible range, band gap energy value was calculated as 4.23 eV for chitosan by UV–Vis spectrometer. Electrical performance of organic chitosan layer in a Schottky device was studied by fabricating of Au/n-Si and Au/chitosan/n-Si devices. The suitability of Au/chitosan/n-Si sandwich devices in optoelectronic applications were tested under dark and illumination conditions. The Au/chitosan/n-Si sandwich device exhibits good photodiode characteristics. Furthermore, the effect of X-ray radiation doses on the electrical properties of the Au/chitosan/n-Si sandwich device was also investigated. In order to get information about electrical characteristics as a function of X-ray radiation doses, Au/chitosan/n-Si sandwich device was exposed to X-ray radiation in same exposure time and various doses. The results highlighted that the performance of the device with chitosan organic interface layer deteriorated with increasing radiation dose. In addition, the transportation mechanism of chitosan based Schottky device was discussed in details.  相似文献   

9.
The electrical conductivity, thermoelectrical, and optical properties of the polyaniline containing boron/double wall carbon nanotubes (CNTs) composites have been investigated. The electrical conductivities of the composites prepared with 1%, 5%, and 8% CNT concentrations at 300 K were found to be 5.31 × 10?6, 2.72 × 10?4, and 1.12 × 10?3 (S/cm), respectively. The thermoelectrical results indicate that all the samples exhibit n‐type electrical conductivity. The optical band gaps of the samples were found to be 3.71 eV for 0% DWNT, 3.32 eV for 1% DWNT, 3.15 eV for 5% DWNT, and 3.12 eV for 8% DWNT. The obtained results suggest that the electrical conductivity of PANI‐B polymer is improved by DWNT doping. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
In this study the current–voltage and capacitance–voltage characteristics of metal semiconductor Ni/p-Si(100) based Schottky diode on p- type silicon measured over a wide temperature range (60–300 K) have been studied on the basis of thermionic emission diffusion mechanism and the assumption of a Gaussian distribution of barrier heights. The parameters ideality factor, barrier height and series resistance are determined from the forward bias current–voltage characteristics. The barrier height for Ni/p-Si(100) Schottky diode found to vary between 0.513 eV and 0.205 eV, and the ideality factor between 2.34 and 8.88 on decreasing temperature 300–60 K. A plot involving the use of ϕb versus 1/T data is used to gather evidence for the occurrence of a Gaussian distribution of barrier height and obtain the value of standard deviation. The observed temperature dependences of barrier height and ideality factor and non-linear activation energy plot are attributed to the Gaussian distribution of barrier heights at the metal-semiconductor contact. The barrier height of Ni/p-Si(100) Schottky diode was also measured over wide temperature from the capacitance-voltage study.  相似文献   

11.
Inverse microemulsion system of cetyltrimethylammonium bromide (CTAB) molecules is utilized for virtually monodispersed and controlled growth of HCl polyaniline (PANI) nanoparticles at room temperature (ca. 300 K). The templated electroconductive polymer reveals lamellar crystalline structure under X-ray diffraction signifying marked sub-chain alignment of the polymerized nanoparticles. The nanostructured polymer has spherically symmetric morphology in a size range of 2.0 nm to 6.0 nm under electron microscope examination. Gel permeation chromatography gives polydispersity index of 1.02 for nanostructured polymer in agreement with the size monodispersity transpired by electron microscopy. The d.c. electrical conductivity σ dc of PANI at room temperature is 10.11 S/cm whereas the variation of conductivity with temperature in the range 227–303 K reveals that the conducting mechanism can be considered as three-dimensional variable-range-hopping (3D-VRH). UV-Vis spectrum indicates two broad absorption bands due to polaron formation that contributes to enhanced electrical conductivity of the polymer. The fundamental absorption edge in the polymer is formed by direct allowed transitions to the extent that the optical band gap value was found to be 2.35 eV. The crystalline nanostructure and homogeneous doping attained in the cationic template of amphiphile are argued as contributing factors to the enhanced conductivity of the polymer.  相似文献   

12.
以苯胺为原料, 采用原位聚合法在聚四氟乙烯(PTFE)基体上合成聚苯胺/聚四氟乙烯(PANI/PTFE)复合膜. 利用光学显微镜、 扫描电子显微镜(SEM)、 傅里叶变换红外光谱(FTIR)、 紫外-可见吸收光谱(UV-Vis)和静态水接触角测试对PANI/PTFE复合膜的形貌、 结构和浸润性进行分析, 并对其油包水乳液分离性能、 通量和循环使用性能进行了测试. 研究结果表明, PANI/PTFE复合膜仅在重力条件就能有效分离油包水乳液; 而且重复数十次过滤后, PANI/PTFE复合膜仍具有良好的抗污能力和分离性能.  相似文献   

13.
In this study, a novel nanocomposite based on polyaniline/polyvinyl alcohol/Ag (PANI/PVA/Ag) has been successfully synthesized. The chemical reduction method was used to produce Ag nanoparticle colloidal solution from Ag+ ions. The polymerization of aniline occurred in situ for the preparation of polyaniline (PANI) in the presence of ammonium persulfate. With exposure to Ag nanoparticles on the PANI/PVA composite, a new nanocomposite was obtained. The morphology and particle size of the novel nanocomposite was studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) analyses. According to XRD analysis, the size of nanoparticles was found to be in the range of 10–17 nm. SEM images showed the favored shape of nanoparticles as triangle which is a benign shape for antibacterial analysis. The antibacterial activity of the obtained nanocomposite was also evaluated against Gram positive bacteria Staphylococcus aureus (Staph. aureus) and Gram negative Escherichia coli (E. coli) using the paper disk diffusion method. The antibacterial study showed that the PANI/PVA composite did not have a very good antibacterial activity but PANI/PVA/Ag nanocomposites were found to be effective against two bacteria.  相似文献   

14.
In this study, a new electrically conducting nanosized Ag–PANI–silica complex, in which nano-silver is bound to silica and polyaniline (PANI), has been synthesized by using γ-irradiation at room temperature and not by using polyvinylpyrrolidone (PVP) as a colloidal stabilizer. The conductivity of nanosized Ag–PANI–silica complex was determined by using the Van der PauW method, and the complex turned out to have a high semi-conductivity (200 S/cm). The optical property and morphology were characterized by using a UV–vis spectrophotometer, field emission-scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The optical absorption bands of UV–vis analysis revealed a peak at 262, 368, and a slowly decreasing band at 600–800 nm originating from the a nanosized Ag–PANI–silica complex. FE-SEM and TEM showed that the nanosized Ag–PANI–silica complex has a particle size ranging from 10 to 30 nm and high stability. The nano-complex prepared by γ-irradiation can be applicable to be used as biosensor materials.  相似文献   

15.
A methodology for improving antistatic property of polyetherimide (PEI) composite using polyaniline (PANI) grafted multi‐walled carbon nanotubes (MWNTs) as conductive medium was proposed. First, the MWNTs grafted with PANI (PANI‐g‐MWNTs) were prepared by in‐situ polymerization in an emulsion system. Subsequently, PANI‐g‐MWNTs were blended with PEI using N‐methyl‐2‐pyrrolidone as solvent. After removing the solvent, the PEI/PANI‐g‐MWNT composite was prepared. As assisted conductive medium, the grafted PANI molecular chains on MWNT surface were dispersed in the PEI matrix to decrease the percolation value of the antistatic composites. The structure and morphology of PANI‐g‐MWNTs were characterized by Fourier transform infrared spectroscopy, transmission electron microscope, thermogravimetric analysis, and X‐ray powder diffraction, respectively. The dispersion of PANI‐g‐MWNTs in PEI matrix was studied by scanning electron microscope. The electrical performance was characterized by highly resistant meter. The volume resistivity of the conductivity percolation threshold was 1.781 × 10?8 S/cm when the loading of PANI‐g‐MWNTs was 1.0 wt%. The conductivity of PANI‐g‐MWNTs/PEI composites was found to be higher than that of pristine MWNTs/PEI composite. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
蒋绪 《高分子科学》2014,32(1):35-42
The polyaniline/partially phosphorylated poly(vinyl alcohol)(PANI/P-PVA) nanoparticles were prepared by the chemical oxidative dispersion polymerization of aniline monomer in 0.5 mol/L HC1 aqueous media with the partially phosphorylated poly(vinyl alcohol) (P-PVA) as the stabilizer and co-dopant. The PANI/P-PVA nanoparticles were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), X-ray diffraction (XRD), electrical conductivity measurements and re-dispersion stability testing. All the results were compared with the properties of the conventional polyaniline in the emeraldine salt form (PANI ES). It was found that the feeding ratio of P-PVA obviously affected the morphology, re-dispersion stability and electrical conductivity of the PANI/P-PVA nanoparticles. When the feeding ratio of P-PVA ranged from 40 wt% to 50 wt%, the PANI/P-PVA nanoparticles showed spherical shape with good uniformity, significant re-dispersion stability in aqueous media and good electrical conductivity.  相似文献   

17.
This communication describes an ultrasonically assisted in‐situ dynamic inverse emulsion polymerization process of aniline in the presence of multi‐walled carbon nanotubes (MWNT) in toluene. During polymerization, MWNT are coated with polyaniline (PANI), forming a core‐shell structure of nano‐wires observed by high‐resolution scanning electron microscopy (HRSEM). The PANI coating of MWNT leads to a remarkable improvement in separation and dispersion of MWNT in toluene, which otherwise would have rapidly coagulated and settled. The presented dynamic polymerization process is very fast and produces stable clear dispersions. CNT enhances both the mechanical properties and electrical conductivity of PANI. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Palladium/Vanadium (Pd/V) Schottky structures are fabricated on n‐type InP (100) and the electrical, structural and surface morphological characteristics have been studied at different annealing temperatures. The extracted barrier height of as‐deposited Pd/V/n‐InP Schottky diode is 0.59 eV (I–V) and 0.79 eV (C–V), respectively. However, the Schottky barrier height of the Pd/V Schottky contact slightly increases to 0.61 eV (I–V) and 0.84 eV (C–V) when the contact is annealed at 200 °C for 1 min. It is observed that the Schottky barrier height of the contact slightly decreases after annealing at 300, 400 and 500 °C for 1 min in N2 atmosphere. From the above observations, it is clear that the electrical characteristics of Pd/V Schottky contacts improve after annealing at 200 °C. This indicates that the optimum annealing temperature for the Pd/V Schottky contact is 200 °C. Basing on the auger electron spectroscopy and X‐ray diffraction results, the formation of Pd‐In intermetallic compound at the interface may be the reason for the increase of barrier height upon annealing at 200 °C. The formation of phosphide phases at the Pd/V/n‐InP interface could be the reason for the degradation in the barrier heights after annealing at 300, 400 and 500 °C. From the AFM results, it is evident that the overall surface morphology of the Pd/V Schottky contacts is fairly smooth. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
An organic solvent soluble and high electrical conductivity, for example, 55.43 S/cm, polyaniline (PANI), was synthesized by a novel method. In this two steps process, a noncovalent approach was initially developed by functionalization of multiwalled carbon nanotubes (MWNTs) using calcium lignosulfonate (LsCa) via self‐assembly to result MWNTs‐LsCa. Then, the MWNT‐LsCa was employed as a template to lead anilinium monomers directly aligned on the surface to start the polymerization of PANI. The noncovalent modification of MWNTs avoided their agglomeration effectively to allow them doped in PANI at the molecular level. The obtained novel PANI/MWNTs‐LsCa presented excellent solubility and high conductivity. The recorded scanning electron microscopy photographs revealed that the MWNTs‐LsCa was wrapped with PANI chains that caused the crystal orientation improvement. In this article, a related scheme on resulting in the high conductivity of PANI/MWNTs‐LsCa was showed and described. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2036–2046, 2009  相似文献   

20.
Ag-doped polyaniline (PANI) nanoparticles are prepared via doping-dedoping-redoping with the thiol group in mercaptosuccinic acid (MSA) providing the linkage between PANI molecules and Ag atoms. Ag-MSA-doped PANI maintains the electrical conductivity well above the room-temperature value of 3.0 S/cm up to 220 °C, reaching its maximum (9.0 S/cm) at 180 °C. In addition, Ag-MSA-doped PANI nanoparticles show remarkable stability against repeated thermal aging at 120 °C. The room-temperature conductivity, in fact, increases by a factor of ∼3 after 3 cycles of thermal aging. The enhanced stability against repeated thermal aging is attributed to the formation of uniformly distributed Ag nanoparticles within the PANI particles upon heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号