首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
In a simple digraph, a star of degree t is a union of t edges with a common tail. The k-domination number γk(G) of digraph G is the minimum number of stars of degree at most k needed to cover the vertex set. We prove that γk(T)=n/(k+1) when T is a tournament with n14k lg k vertices. This improves a result of Chen, Lu and West. We also give a short direct proof of the result of E. Szekeres and G. Szekeres that every n-vertex tournament is dominated by at most lg n−lglg n+2 vertices.  相似文献   

2.
Gould et al. (Combinatorics, Graph Theory and Algorithms, Vol. 1, 1999, pp. 387–400) considered a variation of the classical Turán-type extremal problems as follows: For a given graph H, determine the smallest even integer σ(H,n) such that every n-term graphic sequence π=(d1,d2,…,dn) with term sum σ(π)=d1+d2++dnσ(H,n) has a realization G containing H as a subgraph. In this paper, for given integers k and ℓ, ℓ7 and 3kℓ, we completely determine the smallest even integer σ(kC,n) such that each n-term graphic sequence π=(d1,d2,…,dn) with term sum σ(π)=d1+d2++dnσ(kC,n) has a realization G containing a cycle of length r for each r, krℓ.  相似文献   

3.
An L(2,1)-coloring of a graph G is a coloring of G's vertices with integers in {0,1,…,k} so that adjacent vertices’ colors differ by at least two and colors of distance-two vertices differ. We refer to an L(2,1)-coloring as a coloring. The span λ(G) of G is the smallest k for which G has a coloring, a span coloring is a coloring whose greatest color is λ(G), and the hole index ρ(G) of G is the minimum number of colors in {0,1,…,λ(G)} not used in a span coloring. We say that G is full-colorable if ρ(G)=0. More generally, a coloring of G is a no-hole coloring if it uses all colors between 0 and its maximum color. Both colorings and no-hole colorings were motivated by channel assignment problems. We define the no-hole span μ(G) of G as ∞ if G has no no-hole coloring; otherwise μ(G) is the minimum k for which G has a no-hole coloring using colors in {0,1,…,k}.

Let n denote the number of vertices of G, and let Δ be the maximum degree of vertices of G. Prior work shows that all non-star trees with Δ3 are full-colorable, all graphs G with n=λ(G)+1 are full-colorable, μ(G)λ(G)+ρ(G) if G is not full-colorable and nλ(G)+2, and G has a no-hole coloring if and only if nλ(G)+1. We prove two extremal results for colorings. First, for every m1 there is a G with ρ(G)=m and μ(G)=λ(G)+m. Second, for every m2 there is a connected G with λ(G)=2m, n=λ(G)+2 and ρ(G)=m.  相似文献   


4.
For a graph G of size m1 and edge-induced subgraphs F and H of size k (1km), the subgraph H is said to be obtained from F by an edge jump if there exist four distinct vertices u,v,w, and x in G such that uvE(F), wxE(G)−E(F), and H=Fuv+wx. The minimum number of edge jumps required to transform F into H is the k-jump distance from F to H. For a graph G of size m1 and an integer k with 1km, the k-jump graph Jk(G) is that graph whose vertices correspond to the edge-induced subgraphs of size k of G and where two vertices of Jk(G) are adjacent if and only if the k-jump distance between the corresponding subgraphs is 1. All connected graphs G for which J2(G) is planar are determined.  相似文献   

5.
Every graph can be represented as the intersection graph on a family of closed unit cubes in Euclidean space En. Cube vertices have integer coordinates. The coordinate matrix, A(G)={vnk} of a graph G is defined by the set of cube coordinates. The imbedded dimension of a graph, Bp(G), is a number of columns in matrix A(G) such that each of them has at least two distinct elements vnkvpk. We show that Bp(G)=cub(G) for some graphs, and Bp(G)n−2 for any graph G on n vertices. The coordinate matrix uses to obtain the graph U of radius 1 with 3n−2 vertices that contains as an induced subgraph a copy of any graph on n vertices.  相似文献   

6.
Let k be a fixed, positive integer. We give an algorithm which computes the Tutte polynomial of any graph G of treewidth at most k in time O(n2+7 log2 c), where c is twice the number of partitions of a set with 3k + 3 elements and n the number of vertices of G.  相似文献   

7.
Asymptotic bounds for some bipartite graph: complete graph Ramsey numbers   总被引:6,自引:0,他引:6  
The Ramsey number r(H,Kn) is the smallest integer N so that each graph on N vertices that fails to contain H as a subgraph has independence number at least n. It is shown that r(K2,m,Kn)(m−1+o(1))(n/log n)2 and r(C2m,Kn)c(n/log n)m/(m−1) for m fixed and n→∞. Also r(K2,n,Kn)=Θ(n3/log2 n) and .  相似文献   

8.
G的正常[k]-边染色σ是指颜色集合为[k]={1,2,…,k}的G的一个正常边染色.用wσx)表示顶点x关联边的颜色之和,即wσx)=∑ex σe),并称wσx)关于σ的权.图Gk-邻和可区别边染色是指相邻顶点具有不同权的正常[k]-边染色,最小的k值称为G的邻和可区别边色数,记为χ'G).现得到了路Pn与简单连通图H的字典积Pn[H]的邻和可区别边色数的精确值,其中H分别为正则第一类图、路、完全图的补图.  相似文献   

9.
Yasuo Teranishi   《Discrete Mathematics》2003,260(1-3):255-265
For a connected graph G with n vertices, let {λ12,…,λr} be the set of distinct positive eigenvalues of the Laplacian matrix of G. The Hoffman number μ(G) of G is defined by μ(G)=λ1λ2…λr/n. In this paper, we study some properties and applications of the Hoffman number.  相似文献   

10.
Let S=(a1,...,am; b1,...,bn), where a1,...,am and b1,...,bn are two nonincreasing sequences of nonnegative integers. The pair S=(a1,...,am; b1,...,bn) is said to be a bigraphic pair if there is a simple bipartite graph G=(XY, E) such that a1,...,am and b1,...,bn are the degrees of the vertices in X and Y, respectively. Let Z3 be the cyclic group of order 3. Define σ(Z3, m, n) to be the minimum integer k such that every bigraphic pair S=(a1,...,am; b1,...,bn) with am, bn ≥ 2 and σ(S)=a1 +... + amk has a Z3-connected realization. For n=m, Yin[Discrete Math., 339, 2018-2026 (2016)] recently determined the values of σ(Z3, m, m) for m ≥ 4. In this paper, we completely determine the values of σ(Z3, m, n) for m n ≥ 4.  相似文献   

11.
Let X be the vertex set of KnA k-cycle packing of Kn is a triple (X,C,L), where C is a collection of edge disjoint k-cycles of Kn and L is the collection of edges of Kn not belonging to any of the k-cycles in C. A k-cycle packing (X,C,L) is called resolvable if C can be partitioned into almost parallel classes. A resolvable maximum k-cycle packing of Kn, denoted by k-RMCP(n), is a resolvable k-cycle packing of Kn, (X,C,L), in which the number of almost parallel classes is as large as possible. Let D(n, k) denote the number of almost parallel classes in a k-RMCP(n). D(n, k) for k = 3, 4 has been decided. When nk (mod 2k) and k ≡ 1 (mod 2) or n ≡ 1 (mod 2k) and k ∈{6, 8, 10, 14}∪{m: 5≤m≤49, m ≡ 1 (mod 2)}, D(n, k) also has been decided with few possible exceptions. In this paper, we shall decide D(n, 5) for all values of n≥5.  相似文献   

12.
Let be a fixed finite set of connected graphs. Results are given which, in principle, permit the Ramsey number r(G, H) to be evaluated exactly when G and H are sufficiently large disjoint unions of graphs taken from . Such evaluations are often possible in practice, as shown by several examples. For instance, when m and n are large, and mn,
r(mKk, nKl)=(k − 1)m+ln+r(Kk−1, Kl−1)−2.
  相似文献   

13.
Let G be a plane graph, and let χk(G) be the minimum number of colors to color the vertices of G so that every two of them which lie in the boundary of the same face of the size at most k, receive different colors. In 1966, Ore and Plummer proved that χk(G)2k for any k3. It is also known that χ3(G)4 (Appel and Haken, 1976) and χ4(G)6 (Borodin, 1984). The result in the present paper is: χ5(G)9, χ6(G)11, χ7(G)12, and χk(G)2k − 3 if k8.  相似文献   

14.
For each positive integer k we consider the smallest positive integer f(k) (dependent only on k) such that the following holds: Each connected graph G with chromatic number χ(G) = k can be properly vertex colored by k colors so that for each pair of vertices xo and xp in any color class there exist vertices x1, x2, …, xp-1 of the same class with dist(xi, xi+1) f(k) for each i, 0 i p − 1. Thus, the graph is k-colorable with the vertices of each color class placed throughout the graph so that no subset of the class is at a distance > f(k) from the remainder of the class.

We prove that f(k) < 12k when the order of the graph is k(k − 2) + 1.  相似文献   


15.
A graph G is locally n-connected (locally n-edge connected) if the neighborhood of each vertex of G is n-connected (n-edge connected). The local connectivity (local edge-connectivity) of G is the maximum n for which G is locally n-connected (locally n-edge connected). It is shown that if k and m are integers with O k < m, then a graph exists which has connectivity m and local connectivity k. Furthermore, such a graph with smallest order is determined. Corresponding results are obtained involving the local connectivity and the local edge-conectivity.  相似文献   

16.
Jianxiang Li   《Discrete Mathematics》2003,260(1-3):217-221
Let G be a graph of order n, and let a and b be integers such that 1a<b. Let δ(G) be the minimum degree of G. Then we prove that if δ(G)(k−1)a, n(a+b)(k(a+b)−2)/b, and |NG(x1)NG(x2)NG(xk)|an/(a+b) for any independent subset {x1,x2,…,xk} of V(G), where k2, then G has an [a,b]-factor. This result is best possible in some sense.  相似文献   

17.
Let S(m; d; k) be the set of k-uniform supertrees with m edges and diameter d; and S1(m; d; k) be the k-uniform supertree obtained from a loose path u1; e1; u2; e2,..., ud; ed; ud+1 with length d by attaching md edges at vertex ud/2+1: In this paper, we mainly determine S1(m; d; k) with the largest signless Laplacian spectral radius in S(m; d; k) for 3≤dm –1: We also determine the supertree with the second largest signless Laplacian spectral radius in S(m; 3; k): Furthermore, we determine the unique k-uniform supertree with the largest signless Laplacian spectral radius among all k-uniform supertrees with n vertices and pendent edges (vertices).  相似文献   

18.
Xuding Zhu 《Discrete Mathematics》1998,190(1-3):215-222
Suppose G is a graph. The chromatic Ramsey number rc(G) of G is the least integer m such that there exists a graph F of chromatic number m for which the following is true: for any 2-colouring of the edges of F there is a monochromatic subgraph isomorphic to G. Let Mn = min[rc(G): χ(G) = n]. It was conjectured by Burr et al. (1976) that Mn = (n − 1)2 + 1. This conjecture has been confirmed previously for n 4. In this paper, we shall prove that the conjecture is true for n = 5. We shall also improve the upper bounds for M6 and M7.  相似文献   

19.
The following results are obtained. (i) Let p, d, and k be fixed positive integers, and let G be a graph whose vertex set can be partitioned into parts V1, V2,…, Va such that for each i at most d vertices in V1Vi have neighbors in Vi+1 and r(Kk, Vi) p | V(G) |, where Vi denotes the subgraph of G induced by Vi. Then there exists a number c depending only on p, d, and k such that r(Kk, G)c | V(G) |. (ii) Let d be a positive integer and let G be a graph in which there is an independent set I V(G) such that each component of GI has at most d vertices and at most two neighbors in I. Then r(G,G)c | V(G) |, where c is a number depending only on d. As a special case, r(G, G) 6 | V(G) | for a graph G in which all vertices of degree at least three are independent. The constant 6 cannot be replaced by one less than 4.  相似文献   

20.
A graph G with n vertices is said to be embeddable (in its complement) if there is an automorphism φ of Kn such that E(G) ∩ E(φ(G))=. It is known that all trees T with n (≥2) vertices and T K1,n−1 are embeddable. We say that G is 1-embeddable if, for every edge e, there is an automorphism φ of Kn such that E(G) ∩ E(φ(G))={e};and that it is 2-embeddable if,for every pair e1, e2 of edges, there is an automorphism φ of Kn such that E(G) ∩ E(φ(G))={e1, e2}. We prove here that all trees with n (3) vertices are 1-embeddable; and that all trees T with n (4) vertices and T K1,n−1 are 2-embeddable. In a certain sense, this result is sharp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号