首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
研究液滴在冷凝表面的尺寸分布特征,不仅有助于了解冷凝表面换热机理,同时也为疏水表面的设计提供参考依据。本研究中,借助于液滴生长、合并和脱落全过程的数值模拟方法,研究液滴凝结核密度和液滴脱落尺寸对液滴尺寸分布的影响。模拟中采用热阻模型对液滴生长进行描述,利用链表搜索算法加速液滴聚合及新凝结核确定的搜索过程,再现大液滴脱落和表面清扫过程。模拟结果与实验结果及理论模型吻合良好。模拟结果表明,随着凝结核密度增大,小液滴数密度相对增加,液滴平均半径减少;随着液滴脱离半径减小,液滴尺寸范围减小,液滴尺寸分布整体升高。  相似文献   

2.
低压蒸汽滴状冷凝过程中液滴生长特性   总被引:1,自引:0,他引:1  
研究了低压条件对滴状冷凝过程液滴生长特性的影响。首先,研究了超疏水表面上空气环境和蒸汽环境中附着液滴的接触角,发现蒸汽环境中的接触角比空气环境中的小,而蒸汽压力对接触角没有显著影响。第二,实验研究了冷凝过程中的液滴的生长周期和脱落尺寸,液滴的脱落半径随压力的降低而增大,生长周期也随之延长。第三,实验研究了液滴合并生长速率,并结合理论分析直接冷凝长大的生长速率,直接冷凝生长速率随压力的减小而减小,并随过冷度的减小而下降,而实验范围内合并生长速率不受压力影响。第四,根据滴状冷凝液滴分布的时间序列模型,分析了不同压力下液滴生长的临界尺寸,随着压力的降低,液滴生长方式的临界尺寸增大。  相似文献   

3.
滴状冷凝过程液滴自由表面温度场分析   总被引:1,自引:0,他引:1       下载免费PDF全文
兰忠  朱霞  彭本利  林勐  马学虎 《物理学报》2012,61(15):150508-150508
对于滴状冷凝过程及其传热强化机理, 一般通过分析冷凝壁面上液滴分布和运动规律进行研究, 并且将单个液滴视为稳定的个体, 很少涉及液滴内部运动特征. 本文通过红外热像仪观测了纯蒸气滴状冷凝过程中, 液滴运动时自由表面温度场的演化过程. 发现在疏水壁面上, 液滴由于合并或脱落而发生移动过程中, 其自由表面温度先降低, 而后升高并高于移动前温度. 通过分析疏水表面上液滴移动过程的物理模型, 认为液滴移动时表面液膜发生履带式滚动现象, 或者发生液滴内部与自由表面附近的液体间形成对流和掺混现象. 对液滴运动时表面温度演变规律的分析表明: 触发液滴表面发生持续冷凝可能需要克服一个临界过冷度, 当气液间温差超过该临界值时才诱发冷凝; 液滴合并或脱落等整体运动过程, 导致了液滴内部的运动特征, 并促进了较大尺寸液滴表面发生直接冷凝, 这为强化冷凝传热的研究提供新的思路.  相似文献   

4.
滴状冷凝传热过程具有典型的多尺度特征,一方面体现于壁面上液滴尺寸分布的空间多尺度特征以及液滴生长过程的时间多尺度分布,另一方面体现于冷凝壁面物理化学特性以及液固相互作用特性的描述和量度上的多尺度特征.本文基于包含界面效应影响的滴状冷凝传热模型,分析了液滴尺寸分布的多尺度特征及其对滴状冷凝传热性能的影响,并通过分析液滴尺...  相似文献   

5.
本文通过建立水蒸气滴状冷凝过程的可视化实验装置,采用高速摄像仪对蒸汽在铜基网格状高分子聚合物络合膜表面上发生的滴状冷凝过程进行了观测。我们发现液滴的大小按照等比数列的形式排列,比例系数为1.25。这一发现与Rose关于液滴生长和尺寸分布的假说相吻合,并且从实验事实的中得出了两个重要参数,γ和p,的值分别为1.25 和0.072,这与最新的理论计算值十分接近。  相似文献   

6.
利用红外热成像技术研究了蒸汽滴状冷凝中液滴合并过程表面温度分布及演化机制,并基于此分析了不同尺寸液滴表面温度随传热通量变化的分布规律。实验结果表明:与蒸汽在微小液滴表面发生连续冷凝不同,液滴合并过程中蒸汽通过四个阶段实现在大液滴表面的周期性冷凝传热;其中,在液滴吸收蒸汽冷凝放热阶段和向壁面传热阶段之间存在一个平衡,高热通量时,蒸汽向液滴表面传热过程占主导,液滴表面温度随尺寸增加而升高;低热通量时,液滴向冷凝壁面传热过程占主导,液滴表面温度随尺寸增加而降低。液滴运动引起的蒸汽在大液滴表面直接冷凝过程为强化低压蒸汽冷凝传热提供了新思路。  相似文献   

7.
在工程上通常利用滴状冷凝提高冷凝换热效率、进而强化传热。而当冷凝液滴发生合并自弹跳时,冷凝换热系数是传统滴状冷凝的1.3至1.5倍,因此液滴合并自弹跳现象对冷凝传热强化的贡献是非常大的。一些宏观实验和理论研究表明,加入外电场能进一步促进冷凝液滴合并自弹跳的频率和高度,但在纳米尺度下是否仍遵守这一规律还未可知,因此本文使用分子动力学模拟方法,探究了在超疏水表面上电场的方向和强度对纳米纯水液滴合并自弹跳行为的影响,模拟结果表明垂直向上方向电场会抑制液滴合并自弹跳,垂直向下方向存在一个电场促进弹跳的区间,在此区间内电场强度越大,弹跳速度越大.  相似文献   

8.
实验研究了不同水蒸气压力条件下的滴状冷凝传热特性。10 kPa、40 kPa和70 kPa时的传热系数分别是常压下的56%,68%和81%。随着水蒸气压力的下降,液滴脱落直径变大,液滴生长周期延长,冷凝传热系数下降。通过液滴的动力学特性分析和基于界面效应的滴状冷凝传热模型,分析了低压对水蒸气冷凝传热的主要影响因素,压力变化主要影响了分子扩散率和气-液相际传热热阻,导致总冷凝传热系数随压力下降。  相似文献   

9.
刘天庆  孙玮  李香琴  孙相彧  艾宏儒 《物理学报》2014,63(8):86801-086801
部分润湿液滴是适宜纳米结构表面上滴状冷凝传热的主要载体,研究纳米结构参数与部分润湿液滴合并弹跳之间的关系有重要意义,本文依据冷凝液滴生长过程中能量增加最小的原理来判断其是否为部分润湿状态,并根据液滴合并前后的体积和界面自由能守恒,确定了合并液滴的初始形状,进而对合并液滴变形过程的动力学方程进行了求解,结果表明:部分润湿冷凝液滴仅在纳米柱具有一定高度、直径间距比较大的表面上形成,而当纳米柱高度过低、直径间距比小于0.1时则形成完全润湿的冷凝液滴;液滴合并后能否弹跳与纳米结构参数紧密相关,仅在纳米柱较高、直径间距比适宜的表面上,部分润湿液滴合并后才能诱发弹跳;液滴尺度及待合并液滴间的尺度比对合并弹跳也有重要影响;多个部分润湿液滴合并后由于具有更多的过剩界面自由能而比两个液滴合并更容易诱发弹跳,本模型对纳米结构表面上冷凝液滴是否合并诱发弹跳的计算结果与绝大部分实测结果相一致,准确率达到95%。  相似文献   

10.
对水蒸气在垂直钛板表面的冷凝传热特性进行了可视化实验研究。实验结果表明,蒸汽在钛表面为液滴和沟流状液膜共存的混合冷凝形式。随着表面过冷度的增大,滴状区所占的面积比η逐渐减小,且液滴的脱落直径逐渐增大,导致表面的冷凝传热系数随之下降。η值大于50%时,冷凝传热系数随滴状区所占面积比的减小而陡降,滴状区面积小于膜状区后,η值对冷凝表面传热性能的影响较小。  相似文献   

11.
胡梦丹  张庆宇  孙东科  朱鸣芳 《物理学报》2019,68(3):30501-030501
采用三维多相流格子玻尔兹曼方法 (lattice Boltzmann method, LBM),对纳米结构超疏水表面液滴的冷凝行为进行模拟研究.通过Laplace定律和光滑表面的本征接触角理论对三维LBM模型进行定量验证.模拟分析了超疏水表面纳米阵列的几何尺寸和润湿性的局部不均匀性对冷凝液滴形核位置和最终润湿状态的影响规律.结果表明,较高的纳米阵列使液滴在纳米结构间隙的上部侧面和底部优先形核长大,通过采用上下不均匀的间隙可避免液滴在底部形核长大,而在上部侧面形核的冷凝液滴在生长过程中向上运动,其润湿状态由Wenzel态转变为Cassie态;较低的纳米阵列使液滴在纳米结构底部优先形核长大,液滴的最终润湿状态为Wenzel态;润湿性不均匀的纳米结构表面使液滴在阵列顶端亲水位置处优先形核长大,成为Cassie态.冷凝液滴在不同几何尺寸的纳米结构表面上的最终润湿状态的模拟结果与文献报道的实验结果符合良好.通过模拟还发现,冷凝液滴在生长过程中的运动行为与液滴统计平均作用力的变化有关.本文的LBM模拟再现了三维空间中液滴的形核、长大和润湿状态转变等物理现象.  相似文献   

12.
基于不凝气工况下选择合适蒸汽冷凝润湿性表面,采用ANSYS Fluent软件分别对30°、60°和90°接触角表面及相应组合表面上的冷凝进行了模拟。研究了25%不凝气含量下液滴的成核、合并机制及不同润湿性表面液滴生长周期内的冷凝传热性能,可视化分析了均匀润湿性表面不凝气边界层内液化核心的生成及冷凝液滴的动力学特征,半定量描述了均匀润湿性和组合润湿性表面上瞬态热流密度的分布及其影响机制,为含不凝气工况下不同润湿性冷凝表面的选择及传热强化提供了研究思路。  相似文献   

13.
曹治觉 《物理学报》2004,53(5):1321-1324
从力学和热力学角度简要证明了滴状冷凝时壁面球冠形液滴内外压强差不同于冷凝器内部球 形液滴的内外压强差,并指出有关文献对壁面自由能增量的理解存在概念上的混乱。 关键词: 滴状冷凝 压差 自由能  相似文献   

14.
兰忠  徐威  朱霞  马学虎 《物理学报》2011,60(12):120508-120508
根据反射光谱可用于分析固体表面介质凝聚状态的原理,理论分析了不锈钢表面上不同厚度薄液膜对表面反射率的影响,确定了在冷凝过程中该表面上冷凝液形成和更新过程导致相应反射率变化的范围. 通过分析滴状冷凝实验过程反射光谱的文献数据,研究了滴状冷凝过程壁面上蒸气分子凝聚特征,发现在实际的滴状冷凝传热过程中,液滴脱落后形成的裸露表面上存在反射特征介于液膜与体相蒸气分子之间的介质. 结合蒸气冷凝过程的分子团聚模型,得到了在滴状冷凝过程中近壁面附近的蒸气分子形成分子团聚分布的合理性. 此外,分析发现表面微观结构将改变团聚体分布密度,从而影响冷凝核化过程的现象. 这为冷凝传热强化方法的研究提出了新的思路. 关键词: 分子团聚 反射光谱 滴状冷凝  相似文献   

15.
论小接触角下实现滴状冷凝的可能性   总被引:4,自引:0,他引:4       下载免费PDF全文
曹治觉  夏伯丽  张云 《物理学报》2003,52(10):2427-2431
通过分析液滴在临界态及后续冷凝过程中化学势的变化,解释了冷凝器混合冷凝的形成机理 ,并证明了如果降低壁面过冷度以及采用适当措施降低壁面液滴的脱落半径的话,实现稳定 的小接触角的滴状冷凝是可能的. 关键词: 混合冷凝 接触角 化学势  相似文献   

16.
根据相变过程的微观物理机理和热力学特性,提出了冷凝传热过程中,近壁面蒸汽分子经由团聚阶段进而冷凝成宏观液滴的物理模型.并将团聚体分布与滴状冷凝传热性能相联系,从而研究不凝性气体对滴状冷凝传热过程的影响.在改进的Dillmann和Meier(DM)模型基础上,将分子团聚过程中的临界过饱和度与冷凝过程中的过冷度相联系,以及将团聚体的能量特性与液固界面物理化学特性相联系,将团聚模型与考虑固液界面效应的滴状冷凝传热模型相联系,建立了近壁面条件影响的分子团聚模型.利用模型计算了近壁面蒸汽中团簇体尺寸和分布,以及不凝性气体存在导致的蒸汽冷凝团聚体分布的变化,并结合滴状冷凝传热模型,定量解释了少量不凝性气体的存在,极大影响了冷凝传热性能的现象.模型计算结果与实验结果及文献中含不凝气的蒸汽冷凝传热实验数据进行了比较,两者符合较好,验证了所提出模型的合理性.  相似文献   

17.
本文通过水热法,结合气相沉积法和掩膜紫外光刻法,在玻璃基底上成功地制备了一种具有多尺度结构的超亲水-超疏水组合壁面,并对制备的具有不同润湿差异的组合壁面的冷凝效率进行了测试。结果表明壁面的冷凝效率取决于亲疏水区域的宽度和润湿性差异,其中当亲水区域宽度为0.80 mm,接触角约为0°,疏水区域宽度为0.95 mm,接触角为158°时,其冷凝效率相比光滑铜片的冷凝效率可以提高39%。进一步分析表明,液滴在极端润湿模式的组合表面的润湿分界线处具有较高的体积传输速率,且在超亲水区形成的连续微流通道加快了冷凝液滴快速排放,提高了整体表面的自更新能力。本文的研究,将为复杂润湿界面滴状冷凝的优化提供方向。  相似文献   

18.
基于液滴的转移方法可实现微操作任务中微对象的拾取,锥形操作探针则常作为一种毛细力微操作执行工具。主要研究在空气冷凝模式下锥形探针端面的液滴形成。建立了微液滴形成的数学模型,主要包括初始液滴的形成、液滴的合并和液滴的移动,研究了影响操作液滴的关键参数,分析表明:过冷度决定最小液滴半径。对单液滴的生长机制进行理论分析,并通过数值求解的方法模拟了锥形操作探针端面的液滴形成。搭建实验测试平台,实验研究了微尺度下锥形微操作探针端面的液滴形成。实验结果表明:在空气冷凝模式下,操作探针端面能够形成微液滴。经过初始液滴的形成,液滴的合并和移动等过程最终可形成稳定的微液滴,且不同锥顶角下液滴的形成呈现多样化。  相似文献   

19.
滴状冷凝过程中,存在蒸汽流动对液滴的吹扫作用,液滴在蒸汽剪切作用下克服壁面黏附变形和运动,液滴运动速度越大,冷凝传热性能越高。但是液滴在蒸汽作用下变形和运动的细节还不清晰,蒸汽速度对液滴变形和运动的影响机理还不明确。本文采用自由能格子Boltzmann方法研究了在不同蒸汽速度剪切作用下,液滴在具有不同润湿性固体表面上的变形和运动过程,分析了蒸汽速度和接触角对液滴变形和运动的影响机制,结果显示随着蒸汽速度的增加,液滴变形越大,液滴在固体表面的运动速度越大,停留时间越短,有利于液滴的移除和表面更新,相同蒸汽速度的作用下,液滴在接触角大的固体表面上变形和运动速度越大,也有利于液滴的移除和表面更新。从而定性或半定量地揭示了蒸汽速度影响蒸汽滴状冷凝传热的物理机制。  相似文献   

20.
液滴从固体壁面上脱离的临界条件对农作物生长、滴状冷凝换热、燃料电池水管理等具有重要影响。液滴在气体吹拂下临界滑动是液滴重力与气体施加的拖拽力共同克服表面张力的结果。通过建立受力平衡方程,并无量纲化,本文得到适用于气体剪切下不同壁面倾斜角度及不同气-液-固物系下液滴滑动临界的通用准则。该准则可用于计算燃料电池中固定大小液滴滑动的临界风速,与Fan等实验数据对比,其误差在20%以内。另外,该准则用于计算滴状冷凝中固定风速下液滴临界滑动半径,可以完善蒸汽吹拂下的滴状冷凝模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号