首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Chen J  Xiao S  Wu X  Fang K  Liu W 《Talanta》2005,67(5):992-996
Cloud point extraction (CPE) has been used for the pre-concentration of lead, after the formation of a complex with 2-(5-bromo-2-pyridylazo)-5-(diethylamino)-phenol (5-Br-PADAP), and later analysis by graphite furnace atomic absorption spectrometry (GFAAS) using octylphenoxypolyethoxyethanol (TritonX-114) as surfactant. The chemical variables affecting the separation phase were optimized. Separation of the two phases was accomplished by centrifugation for 15 min at 4000 rpm. Under the optimum conditions i.e., pH 8.0, cloud point temperature 40 °C, [5-Br-PADAP] = 2.5 × 10−5 mol l−1, [Triton X-114] = 0.05%, added methanol volume = 0.15 ml, pre-concentration of only 10 ml sample permitted an enhancement factor of 50-fold. The lower limit of detection (LOD) obtained under the optimal conditions was 0.08 μg l−1. The precision for 10 replicate determinations at 5 μg l−1 Pb was 2.8% relative standard deviation (R.S.D.). The calibration graph using the pre-concentration system for lead was linear with a correlation coefficient of 0.9984 at levels near the detection limits up to at least 30 μg l−1. The method was successfully applied to the determination of lead in water samples.  相似文献   

2.
Cloud point methodology has been successfully used for the preconcentration of trace amounts of Cd and Pb as a prior step to their determination by flame atomic absorption spectrometry. O,O-Diethyldithiophosphate and Triton X-114 are used as hydrophobic ligand and non-ionic surfactant, respectively. After phase separation at 40 °C based on cloud point of the mixture, the surfactant-rich phase is diluted with methanol. The enriched analyte in the final solution is determined by flame atomic absorption spectrometry using conventional nebulization. After optimization of the complexation and extraction conditions, enhancement factors of 22 and 43 were obtained for Cd and Pb, respectively. Under the experimental conditions used, preconcentration of only 10 ml of sample in the presence of 0.05% (v/v) Triton X-114 permitted the detection of 0.62 μg l−1 of Cd and 2.86 μg l−1of Pb. The proposed method was applied to the determination of Cd and Pb in human hair samples.  相似文献   

3.
Tang AN  Ding GS  Yan XP 《Talanta》2005,67(5):942-946
Cloud point extraction was applied as a preconcentration step for electrothermal atomic absorption spectrometry (ETAAS) determination of As(III) in aqueous solutions. After complexation with ammonium pyrrolidinedithiocarbamate, the analyte was quantitatively extracted to the surfactant-rich phase in the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114) after centrifugation. 0.1 mol L−1 HNO3 in methanol was added to the surfactant-rich phase before ETAAS determination. The precision (R.S.D.) for 11 replicate determinations of 5.0 μg L−1 of As(III) was 3.0%. The concentration factor, which is defined as the concentration ratio of the analyte in the final diluted surfactant-rich extract ready for ETAAS determination and in the initial solution, was 36 for As(III). The linear concentration range was from 0.1 to 20 μg L−1. The developed method was applied to the determination of As(III) in lake water and river water.  相似文献   

4.
A sequential injection analysis (SIA) spectrophotometric method for the determination of trace amounts of zinc(II) with 1-(2-pyridylazo)-2-naphthol (PAN) is described. The method is based on the measurement of absorbance of the zinc(II)–PAN chelate solubilized with a non-ionic surfactant, Triton X-100, no extraction procedure is required in the proposed method, yielding a pink colored complex at pH 9.5 with absorption maximum at 553 nm. The SIA parameters that affect the signal response have been optimized in order to get the better sensitivity and minimum reagent consumption. A linear relationship between the relative peak height and concentration was obtained in the concentration range of 0.1–1.0 μg ml−1. The limit of detection (LOD, defined as 3σ) and limit of quantification (LOQ, defined as 10σ) were 0.02 and 0.06 μg ml−1, respectively. The sample throughput about 40 samples/h was obtained. The repeatability were 1.32 and 1.24% (n = 10) for 0.1 and 0.5 μg ml−1, respectively. The proposed method was successfully applied to the assay of zinc(II) in three samples of multivitamin tablets. The results were found to be in good agreement with those obtained by flame atomic absorption spectrophotometric method and with the claimed values by the manufactures. The t-test showed no significant difference at 95% confidence level.  相似文献   

5.
An automated method is described for the determination of zinc in human saliva by electrothermal atomic absorption spectrometry (ET AAS) after on-line dilution of samples with a significant reduction of sample consumption per analysis (<0.4 mL including the dead volume of the system). In order to fulfill this aim without changing the sample transport conduits during the experiments, a flow injection (FI) dilution system was constructed. Its principal parts are: one propulsion device (peristaltic pump, PP) for either samples, standards or washing solution all located in an autosampler tray and for the surfactant solution (Triton X-100) used as diluent, and a two-position time based solenoid injector (TBSI1) which allowed the introduction of 10 μL of either solution in the diluent stream. To avoid unnecessary waste of samples, the TBSI1 also permitted the recirculation of the solutions to their respective autosampler cups. The downstream diluted solution fills a home made sampling arm assembly. The sequential deposition of 20 μL aliquots of samples or standards on the graphite tube platform was carried out by air displacement with a similar time based solenoid injector (TBSI2). The dilution procedure and the injection of solutions into the atomizer are computer controlled and synchronized with the operation of the temperature program. Samples or standards solutions were submitted to two drying steps (at 90 and 130 °C), followed by pyrolysis and atomization at 700 and 1700 °C, respectively. The aqueous calibration was linear up to 120.0 μg L−1 for diluted standard solutions/samples and its slope was similar (p > 0.05) to the standard addition curve, indicating lack of matrix effect. The precision tested by repeated analysis of real saliva samples was less than 3% and the detection limit (3σ) was of 0.35 μg L−1. To test the accuracy of the proposed procedure, recovery tests were performed, obtaining mean recovery of added zinc of 97.8 ± 1.3%. Furthermore, Zn values estimated by the procedure developed in this work were compared with those obtained by a standard addition flame-AAS method applied to 20 randomly selected saliva samples. No significant differences (p > 0.05) were obtained between the two methods. Zinc levels in saliva samples from 44 healthy volunteers, 15 male and 29 female, with ages between 20 and 51 years (mean 30.50 ± 9.14 years) were in the range 22–98 μg L−1 (mean of 55 ± 17 μg L−1), similar to some and different from others reported in the literature. It was found that zinc values for male were statistically higher (p = 0.006) than for female.  相似文献   

6.
The effect of spray drying and reconstitution has been studied for oil-in-water emulsions (20.6% maltodextrin, 20% soybean oil, 2.4% protein, 0.13 M NaCl, pH 6.7) with varying ratios of sodium caseinate and whey protein, but with equal size distribution (d32=0.77 μm). When the concentration of sodium caseinate in the emulsion was high enough to entirely cover the oil–water interface, the particle size distribution was hardly affected by spray drying and reconstitution. However, for emulsions of which the total protein consisted of more than 70% whey protein, spray drying resulted in a strong increase of the droplet size distribution. The adsorbed amount of protein ranged from 3 mg m−2 for casein-stabilised emulsions to 4 mg m−2 for whey protein-stabilised emulsions with a maximum of 4.2 mg m−2 for emulsions containing 80% whey protein on total protein, which means that for all these emulsions about one quarter of the available protein was adsorbed at the oil–water interface. The adsorbed amount of protein was hardly affected by spray drying. After emulsion preparation casein proteins adsorbed preferentially at the oil–water interface. As a result of spray drying, the relative amount of β-lactoglobulin in the adsorbed layer increased strongly at the expense of s1-casein and β-casein. Percentages of s2-casein and κ-casein in the adsorbed layer remained largely unchanged. The changes in the protein composition of the adsorbed layer as a result of spray drying and reconstitution were the largest when beforehand hardly any whey protein was present in the adsorbed layer and hardly any sodium caseinate in the aqueous phase. Apparently, during spray drying conditions have been such that β-lactoglobulin could unfold, aggregate, and react with other cystein-containing proteins changing the particle size distribution of the emulsions and the composition of the adsorbed layer. It seemed, however, that non-adsorbed sodium caseinate in some way was able to protect the adsorbed casein proteins from being displaced by aggregating whey protein.  相似文献   

7.
Cloud point extraction (CPE) has been used for the simultaneous pre-concentration of cadmium, copper, lead and zinc after the formation of a complex with 1-(2-thiazolylazo)-2-naphthol (TAN), and later analysis by flame atomic absorption spectrometry (FAAS) using octylphenoxypolyethoxyethanol (Triton X-114) as surfactant. The chemical variables affecting the separation phase and the viscosity affecting the detection process were optimized. At pH 8.6, pre-concentration of only 50 ml of sample in the presence of 0.05% Triton X-114 and 2×10−5 mol l−1 TAN permitted the detection of 0.099, 0.27, 1.1 and 0.095 ng ml−1 cadmium, copper, lead and zinc, respectively. The enhancement factors were 57.7, 64.3, 55.6 and 63.7 for cadmium, copper, lead and zinc, respectively. The proposed method has been applied to the determination of cadmium, copper, lead and zinc in water samples and a standard reference material (SRM).  相似文献   

8.
The on-line incorporation of cloud point extraction (CPE) to flow injection analysis (FIA) was previously based on the use of a cotton-packed column to entrap the analyte-containing surfactant aggregates after salt-induced CPE, and then the preconcentrated analyte was eluted into a separate detection cell for subsequent chemiluminescence (CL) detection (via the peroxyoxalate CL reaction). In the work, the on-line CPE/FIA technique was improved by the following: (1) sample preconcentration and CL detection were both carried out directly inside the collection column, thus avoiding the decrease in detection sensitivity due to sample dispersion and dilution, and (2) CL detection was performed through the reaction between nitrite and hydrogen peroxide, which is compatible with aqueous samples and should allow for chemical excitation to occur more efficiently inside the collection column. In addition to more effective sample preconcentration, the CL detection of the entrapped analytes directly inside the collection column, i.e., a unique heterogeneous microenvironment in which analyte-containing surfactant aggregates were embedded within the densely packed filtering material, may also contribute to the overall increase in CL intensity (e.g., a CL enhancement factor of ca. 1000). Under optimum experimental conditions, the calibration curve was found to be linear for the CL detection of bilirubin (5 to 120 μg L−1), the limit of detection (S/N = 3) was 1.8 μg L−1, and the R.S.D. was ca. 2.6% (n = 30) for 20 μg L−1 bilirubin. Good agreements were obtained for the determination of total bilirubin in certified reference human serum samples between the present approach and an established clinical method.  相似文献   

9.
A procedure for arsenic species fractionation in alga samples (Sargassum fulvellum, Chlorella vulgaris, Hizikia fusiformis and Laminaria digitata) by extraction is described. Several parameters were tested in order to evaluate the extraction efficiency of the process: extraction medium, nature and concentration (tris(hydroxymethyl)aminomethane, phosphoric acid, deionised water and water/methanol mixtures), extraction time and physical treatment (magnetic stirring, ultrasonic bath and ultrasonic focussed probe). The extraction yield of arsenic under the different conditions was evaluated by determining the total arsenic content in the extracts by ICP-AES. Arsenic compounds were extracted in 5 mL of water by focussed sonication for 30 s and subsequent centrifugation at 14,000 × g for 10 min. The process was repeated three times. Extraction studies show that soluble arsenic compounds account for about 65% of total arsenic.

An ultrafiltration process was used as a clean-up method for chromatographic analysis, and also allowed us to determine the extracted arsenic fraction with a molecular weight lower than 10 kDa, which accounts for about 100% for all samples analysed.

Speciation studies were carried out by HPLC–ICP-AES. Arsenic species were separated on a Hamilton PRP-X100 column with 17 mM phosphate buffer at pH 5.5 and 1.0 mL min−1 flow rate. The chromatographic method allowed us to separate the species As(III), As(V), MMA and DMA in less than 13 min, with detection limits of about 20 ng of arsenic per species, for a sample injection volume of 100 μL. The chromatographic analysis allowed us to identify As(V) in Hizikia (46 ± 2 μg g−1), Sargassum (38 ± 2 μg g−1) and Chlorella (9 ± 1 μg g−1) samples. The species DMA was also found in Chlorella alga (13 ± 1 μg g−1). However, in Laminaria alga only an unknown arsenic species was detected, which eluted in the dead volume.  相似文献   


10.
A simple and rapid flow injection (FI) method is reported for the determination of phosphate (as molybdate reactive P) in freshwaters based on luminol chemiluminescence (CL) detection. The molybdophosphoric heteropoly acid formed by phosphate and ammonium molybdate in acidic conditions generated chemiluminescence emission via the oxidation of luminol. The detection limit (3× standard deviation of blank) was 0.03 μg P l−1 (1.0 nM), with a sample throughput of 180 h−1. The calibration graph was linear over the range 0.032–3.26 μg P l−1 (r2=0.9880) with relative standard deviations (n=4) in the range 1.2–4.7%. Interfering cations (Ca(II), Mg(II), Ni(II), Zn(II), Cu(II), Co(II), Fe(II) and Fe(III)) were removed by passing the sample through an in-line iminodiacetate chelating column. Silicate interference (at 5 mg Si l−1) was effectively masked by the addition of tartaric acid and other common anions (Cl, SO42−, HCO3, NO3 and NO2) did not interfere at their maximum admissible concentrations in freshwaters. The method was applied to freshwater samples and the results (26.1±1.1–62.0±0.4 μg P l−1) were not significantly different (P=0.05) from results obtained using a segmented flow analyser method with spectrophotometric detection (24.4±4.45–84.0±16.0 μg P l−1).  相似文献   

11.
Hydrogen peroxide in basic media is proposed as a means for dissolving whole blood samples to be analyzed by electrothermal atomization atomic absorption spectrometry, ET AAS. Approximately 2 g of the whole blood sample were directly weighed in a 150 mL volumetric flask; 3 mL of a NaOH 0.2 mol L−1 solution, two drops of 1-octanol, as an antifoaming agent, and 1 mL of 30% volume hydrogen peroxide were added to the flask to promote oxidation. The solution was then manually shaken and after approximately three minutes of shaking, a clear solution, with no apparent suspended solids or greasy layers, was obtained. Distilled-deionized water was used to complete the volume. Ten μL of the resulting solution along with 10 μL of a solution containing 5000 mg L−1 of NH4H2PO4 and 300 mg L−1 of Mg(NO3)2 as a modifier, were injected into transversely heated graphite tubes for lead determination. Both aqueous standards and standard addition calibration curves produced results not significantly different at a 95% confidence limit level. Accuracy of the measurements was assessed by analysis of the IAEA A-13 (concentration of trace and minor elements in freeze dried animal blood) standard reference material containing 0.18 mg L−1 lead on a dry basis and by means of recovery tests. Analysis of the IAEA A-13 standard produced 0.17 ± 0.02 mg L−1 lead on a dry basis; recovery tests afforded values from 95 to 105%. Ten consecutive measurements of a 5 ppb lead solution gave a characteristic mass of 47.2 pg and a (3S) detection limit of 1.77 μg L−1 Pb. Results obtained from analysis of whole blood samples of volunteer donors covered a lead concentration range between 8 and 21 μg L−1 with a mean value of 11.9 ± 4.7 μg L−1.  相似文献   

12.
A method for the determination of total selenium in serum samples by graphite furnace atomic absorption spectrometry was evaluated. The method involved direct introduction of 1:5 diluted serum samples (1% v/v NH4OH+0.05% w/v Triton X-100®) into transversely heated graphite tubes, and the use of 10 μg Pd+3 μg Mg(NO3)2 as chemical modifier. Optimization of the modifier mass and the atomization temperature was conducted by simultaneously varying such parameters and evaluating both the integrated absorbance and the peak height/peak area ratio. The latter allowed the selection of compromise conditions rendering good sensitivity and adequate analyte peak profiles. A characteristic mass of 49 pg and a detection limit (3s) of 6 μg 1−1 Se, corresponding to 30 μg l−1 Se in the serum sample, were obtained. The analyte addition technique was used for calibration. The accuracy was assessed by the determination of total selenium in Seronorm™ Trace Elements Serum Batch 116 (Nycomed Pharma AS). The method was applied for the determination of total selenium in ten serum samples taken from individuals with no known physical affection. The selenium concentration ranged between 79 and 147 μg l−1, with a mean value of 114±22 μg l−1.  相似文献   

13.
A simple procedure was developed for the direct determination of As(III) and As(V) in water samples by flow injection hydride generation atomic absorption spectrometry (FI–HG–AAS), without pre-reduction of As(V). The flow injection system was operated in the merging zones configuration, where sample and NaBH4 are simultaneously injected into two carrier streams, HCl and H2O, respectively. Sample and reagent injected volumes were of 250 μl and flow rate of 3.6 ml min−1 for hydrochloric acid and de-ionised water. The NaBH4 concentration was maintained at 0.1% (w/v), it would be possible to perform arsine selective generation from As(III) and on-line arsine generation with 3.0% (w/v) NaBH4 to obtain total arsenic concentration. As(V) was calculated as the difference between total As and As(III). Both procedures were tolerant to potential interference. So, interference such as Fe(III), Cu(II), Ni(II), Sb(III), Sn(II) and Se(IV) could, at an As(III) level of 0.1 mg l−1, be tolerated at a weight excess of 5000, 5000, 500, 100, 10 and 5 times, respectively. With the proposed procedure, detection limits of 0.3 ng ml−1 for As(III) and 0.5 ng ml−1 for As(V) were achieved. The relative standard deviations were of 2.3% for 0.1 mg l−1 As(III) and 2.0% for 0.1 mg l−1 As(V). A sampling rate of about 120 determinations per hour was achieved, requiring 30 ml of NaBH4 and waste generation in order of 450 ml. The method was shown to be satisfactory for determination of traces arsenic in water samples. The assay of a certified drinking water sample was 81.7±1.7 μg l−1 (certified value 80.0±0.5 μg l−1).  相似文献   

14.
An analytical method for analysing acrylamide in coffee was validated. The analysis of prepared coffee includes a comprehensive clean-up using multimode solid-phase extraction (SPE) by automatic SPE equipment and detection by liquid chromatography tandem mass spectrometry using electrospray in the positive mode. The recoveries of acrylamide in ready-to-drink coffee spiked with 5 and 10 μg l−1 were 96±14% and 100±8%, respectively. Within laboratory reproducibility for the same spiking levels were 14% and 9%, respectively. Coffee samples (n = 25) prepared twice by coffee machines and twice by a French Press Cafetière coffee maker contained 8±3 μg l−1 and 9±3 μg l−1 acrylamide. Five ready-to-drink instant coffee prepared twice contained 8±2 μg l−1. Hence, the results do not show significant differences in the acrylamide contents in ready-to-drink coffee prepared by coffee machine, French Press or from instant coffee. Medium roasted coffee contained more acrylamide (10 μg l−1) than dark roasted coffee (5 μg l−1). Males aged 35–45 years, drinking on average 1.1 l coffee per day are exposed to the highest doses of acrylamide from coffee. The dietary intake of acrylamide from coffee comprises, on an average, 10 μg day−1 for males and 9 μg day−1 for females aged 35–45 years. Probabilistic modelling of the exposure of Danish consumers (all adults) to acrylamide from coffee shows a mean exposure of 6.5 μg day−1 and a 95 percentile of 18 μg day−1.  相似文献   

15.
Analytical procedure for the determination of toxicologically relevant arsenic (the sum of arsenite, arsenate, monomethylarsonate and dimethylarsinate) in urine by flow injection hydride generation and collection of generated inorganic and methylated hydrides on an integrated platform of a transverse-heated graphite atomizer for electrothermal atomic absorption spectrometric determination (ETAAS) is elaborated. Platforms are pre-treated with 2.7 μmol of zirconium and then with 0.10 μmol of iridium which serve both as an efficient hydride sequestration medium and permanent chemical modifier. Arsine, monomethylarsine and dimethylarsine are generated from diluted urine samples (10–25-fold) in the presence of 50 mmol L−1 hydrochloric acid and 70 mmol L−1 l-cysteine. Collection, pyrolysis and atomization temperatures are 450, 500, 2100 and 2150 °C, respectively. The characteristic mass, characteristic concentration and limit of detection (3σ) are 39 pg, 0.078 μg L−1 and 0.038 μg L−1 As, respectively. The limits of detection in urine are ca. 0.4 and 1 μg L−1 with 10- and 25-fold dilutions. The sample throughput rate is 25 h−1. Applications to several urine CRMs are given.  相似文献   

16.
Bismuth as BiCl4 and BH4 ware successively retained in a column (150 mm × 4 mm, length × i.d.) packed with Amberlite IRA-410 (strong anion-exchange resin). This was followed by passage of an injected slug of hydrochloric acid resulting in bismuthine generation (BiH3). BiH3 was stripped from the eluent solution by the addition of a nitrogen flow and the bulk phases were separated in a gas–liquid separator. Finally, bismutine was atomized in a quartz tube for the subsequent detection of bismuth by atomic absorption spectrometry. Different halide complexes of bismuth (namely, BiBr4, BiI4 and BiCl4) were tested for its pre-concentration, being the chloride complexes which produced the best results. Therefore, a concentration of 0.3 mol l−1 of HCl was added to the samples and calibration solutions. A linear response was obtained between the detection limit (3σ) of 0.225 and 80 μg l−1. The R.S.D.% (n = 10) for a solution containing 50 μg l−1 of Bi was 0.85%. The tolerance of the system to interferences was evaluated by investigating the effect of the following ions: Cu2+, Co2+, Ni2+, Fe3+, Cd2+, Pb2+, Hg2+, Zn2+, and Mg2+. The most severe depression was caused by Hg2+, which at 60 mg l−1 caused a 5% depression on the signal. For the other cations, concentrations between 1000 and 10,000 mg l−1 could be tolerated. The system was applied to the determination of Bi in urine of patients under therapy with bismuth subcitrate. The recovery of spikes of 5 and 50 μg l−1 of Bi added to the samples prior to digestion with HNO3 and H2O2 was in satisfactory ranges from 95.0 to 101.0%. The concentrations of bismuth found in six selected samples using this procedure were in good agreement with those obtained by an alternative technique (ETAAS). Finally, the concentration of Bi determined in urine before and after 3 days of treatment were 1.94 ± 1.26 and 9.02 ± 5.82 μg l−1, respectively.  相似文献   

17.
Siswana M  Ozoemena KI  Nyokong T 《Talanta》2006,69(5):1136-1142
This paper describes the construction of a carbon paste electrode (CPE) impregnated with nanoparticles of iron(II) phthalocyanine (nanoFePc). The new electrode (nanoFePc-CPE) revealed interesting electrocatalytic behaviour towards amitrole; pure catalytic diffusion-controlled process, with high Tafel slope (235 mV/decade) suggesting strong binding of amitrole with nanoFePc catalyst. The effects of catalyst loading, varying pH and electrolytes were studied. The mechanism for the interaction of amitrole with the nanoFePc is proposed to involve the Fe(III)Pc/Fe(II)Pc redox process. Using chronoamperometry (E = +0.42 V versus Ag/AgCl) technique, the sensor was reliably employed for amitrole assay at pH 12.0 phosphate buffer (with sodium sulphate as the supporting electrolyte) for up to 12 nM amitrole with excellent sensitivity (ca. 3.44 μA/nM) and low detection limit (3.62 ± 0.11 nM, i.e. 0.305 μg L−1 using the YB + 3σB criterion and 0.85 ± 0.03 nM, i.e. 70 ng/L with the YB + 2σB criterion) as well as satisfactory amperometric selectivity coefficient (Kamp ≈ 7.4 × 10−4 for ammonium thiocyanate, a component of many amitrole herbicides, and 3.2 × 10−3 for asulam pesticide). The surface of the electrode can easily be regenerated by simple polishing on an alumina paper, obtaining a fresh surface ready for use in a new assay. The proposed electrode was successfully applied in the quantification of amitrole in its commercial formulation as well as in tap water samples.  相似文献   

18.
Docekalová H  Divis P 《Talanta》2005,65(5):1174-1178
The diffusive gradient in thin films (DGT) technique was investigated and used to measure mercury concentration in river water. Mercury ions are covalently bound to amide nitrogen groups of commonly used polyacrylamide, which makes this gel unsuitable as a diffusive medium. In contrast, agarose gel was found as the diffusive gel for mercury measurements. Basic performance tests of agarose DGT verified the applicability of Fick's first law for DGT measurements. Two selective resins, Chelex-100 with iminodiacetic groups and Spheron-Thiol with thiol groups were used. The measured diffusion coefficient in agarose gel was close to that in water. The concentration of mercury in Svitava river measured by DGT with Speron-Thiol resin gel was higher (0.0116 ± 0.0009 μg l−1) than those obtained by Chelex-100 (0.0042 ± 0.0005 μg l−1). Different capture efficiencies of two adsorbents enable to estimate fractions of mercury bonded in different complexes in the river water. The concentrations of mercury found by DGT both Chelex-100 and Speron-Thiol resin gels are much lower than that measured directly in the river water (0.088 ± 0.012 μg l−1). This difference indicates that DGT concerns inorganic ions and labile species only, and that it is not able to include inert organic species and colloids.  相似文献   

19.
Oil-in-water (O/W) emulsions were prepared using a hydrophobically modified inulin surfactant, INUTEC®SP1. The quality of the emulsions was evaluated using optical microscopy. Emulsions, prepared using INUTEC®SP1 alone had large droplets, but this could be significantly reduced by addition of a cosurfactant to the oil phase, namely Span 20. The stability of the emulsions was investigated in water, in 0.5, 1.0 and 2 mol dm−3 NaCl as well as 0.5, 1.0, 1.5 and 2 mol dm−3 MgSO4. All emulsions containing NaCl did not show any strong flocculation or coalescence up to 50 °C for almost 1 year storage. With MgSO4 they were stable up to 50 °C and 1 mol dm−3. The stability of the emulsions against strong flocculation and coalescence could be attributed to the conformation of the polymeric surfactant at the O/W interface (multipoint attachment with several loops) and the strong hydration of the polyfructose chain in such high electrolyte concentrations. This was confirmed using cloud point measurements, which showed absence of any cloudiness up to 100 °C and at NaCl concentrations reaching 4 mol dm−3 and MgSO4 reaching 1 mol dm−3. These high cloud points in electrolyte solutions could not be reached with polyethylene glycol. This clearly demonstrated the superiority of INUTEC®SP1 surfactant as an emulsion stabiliser when compared with surfactants based on polyethylene glycol. Viscoelastic measurements showed a gradual increase in the storage modulus G′ with storage time both at room temperature and 50 °C. This was indicative of weak flocculation and absence of coalescence. The weak flocculation of the emulsions could be attributed to the presence of an energy minimum, Gmin, in the energy–distance curve.  相似文献   

20.
Two novel Cd(II)-citrate complexes were obtained with different metal/ligand ratios through hydrothermal method. Their structures were determined by single-crystal X-ray diffraction analysis. Although their topological structures are both 2-D layer network assemblies, both central Cd(II) ions and Hcit3− ligands display completely different coordination modes. In polymeric complex 1, Hcit3− serves as a μ10-bridged and central Cd(II) ions adopt 6- and 8-coordinated configurations. In contrast, a μ9-bridged and 6- and 7-coordinated environments between Cd(II) and Hcit3− are established in the polymeric complex 2. Two Complexes remain stable up to approximately 300 °C. The complex 1 exhibits strong fluorescent emission band at 450 nm (λ=346 nm) as well as complex 2 exhibits strong fluorescent emission band at 430 (λ=346 nm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号