首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Active acoustic structure (AAS) proposed in recent years has been viewed as an encouraging approach to actively control sound radiation from vibrating structures. Much work of AAS has been done on theoretical model, arrangement of the secondary panel and error sensing, and experimental investigation of AAS system, but physical mechanisms is little understanding. In this study, under minimization of the total sound power output, the physical mechanism of noise reduction is investigated by analyzing the sound power output change of primary and secondary structures and the distribution of sound intensity. The results show that there are two kinds of energetic behaviors, which includes the suppression of the sound power radiated by the primary panel and absorption of sound power by the primary and secondary panels.  相似文献   

2.
The nearfield error sensing approach, which is one of the key problems encountered in the implementation of active acoustic structure, is investigated theoretically. The basic idea involves a limited number of PVDF film pairs be boned to the surface of the primary panel and secondary panels for measuring the total radiated sound power. In this paper, first, a theoretical model associated with the active acoustic structure is established. Second, the formulae for the shape coefficient of the PVDF pairs are derived based on the acoustic radiation modes and a PVDF sensing model. Finally, a number of computer simulations are performed and the shape of the PVDF pairs and corresponding reduction in the radiated sound power are calculated. The results demonstrate the feasibility of the proposed nearfield error sensing strategy.  相似文献   

3.
基于声辐射模态的有源结构声传入及其辐射控制   总被引:4,自引:1,他引:3  
从辐射模态的概念和角度研究利用结构误差传感方法对弹性封闭空间结构声辐射进行传感和有源控制。首先分析了辐射模态的数学和物理意义并揭示了辐射模态与声腔模态之间的内在耦合关系。通过声辐射模态建立了弹性封闭空间结构声辐射传感和有源控制模型,并提出了通过传感器阵列测量结构表面有限点的振速分布和设计特定的辐射模态空间滤波器来获得控制所需的误差信号。在此基础上对封闭空间结构声辐射有源控制和误差传感策略进行了深入的理论和数值仿真分析,重点讨论了传感器的数量和布放对辐射模态传感及其有源控制效果的影响。结果表明:辐射模态与声腔模态的耦合具有严格的选择性,各阶辐射模态的形状和与相耦合的主导声模态在耦合面上的形状非常相似;利用结构传感技术传感封闭空间的辐射模态时测点不足或空间采样不足将可能产生较严重的模态泄漏问题,使得不希望的结构模态泄露进所测的辐射模态当中来。在低频范围内,一般只需传感并最小化前三阶有效辐射模态声势能,在更低频和空间声模态频率附近,只需最小化前一阶最有效辐射模态声势能,便能和总声势能最小化策略控制效果基本一样。   相似文献   

4.
Patch near-field acoustic holography (NAH) coupled with an array of sound intensity probes allows separating the sound field incident on a surface from the one radiated by the surface itself. Although the measurement principle has been successfully used to separate the noise source contribution from disturbing sources and/or noise reflections, the method accuracy has not been investigated in the literature. We describe the results of experiments meant to evaluate the uncertainty in the identification of noise radiated by vibrating panels with different absorption characteristics in presence of an incident acoustic radiation using the statistically optimized near-field acoustic holography. Measurement errors were evaluated through tests performed in controlled acoustic conditions. Results evidenced that the measurement uncertainty depends on the accuracy of the microphone array positioning and on the incident sound field. These conclusions were in agreement with the results obtained by simulations in the phase of instrument optimization.  相似文献   

5.
Both acoustic radiation modes and structural modes play an important role in the field of structure-borne sound, however, little work has been done for inherent relations between these two kinds of modes. This paper is focused on the relationship between the radiation modes and structural modes and its physical mechanisms. First, a governing equation for relating the radiation mode and structural mode is given based on the characteristics of the modes. Then, using the symmetric or anti-symmetric properties of two kinds of modes, the corresponding relations are presented. And then, numerical examples are given to verify the theoretical investigations, and it has been shown that, for a simply supported rectangular panel vibrating at low frequencies, the first radiation mode is dominant corresponding to (odd, odd) structural modes; the following radiation modes are respectively dominant corresponding to (even, odd), (odd, even), and (even, even) structural modes. Finally, such relations are applied to active acoustic structural control and provide a direct help for the design of active control strategy and arrangement of the secondary forces.  相似文献   

6.
The active control of radiation from large structures is a difficult, though important practical problem. The major reason for the difficulty is the ‘system’ size, as a large number of sensors and actuators are required for successful implementation, thus making it hard to design a robust, efficient system that integrates all sensors and actuators. This work examines the active attenuation of the global error, sound power, from the point of view of two sensing/control strategies that seek to be generalised; thus are applicable to a wide range of applications and are independent of knowledge of structural dynamics. In each approach the idea is that the required hardware can simply be attached, turned on, and immediately being to attenuate global noise. The two strategies are compared based on the level of attenuation of the global error sound power, the attenuation per total control force, and attenuation per actuator (in a structural-acoustic situation). The first strategy is the collocated-decentralised approach, which is built on measuring and controlling local vibration in an attempt to influence the global acoustic error. An alternative approach, termed the hybrid approach is firstly developed. The approach is termed ‘hybrid’ because it is a mix between a fully ‘centralised’ and ‘decentralised’ approach; but still measuring and controlling the global acoustic error directly. The attenuation of sound power is compared for both strategies on two structural sources; using 16 identically placed velocity sensors and 16 secondary point sources, in simulation in an attempt to suggest efficient sensing and control approaches for the global control of sound radiation from large structural sources.  相似文献   

7.
This paper compares various decentralised control strategies, including structural and acoustic actuator–sensor configuration designs, to reduce noise transmission through a double panel structure. The comparison is based on identical control stability indexes. The double panel structure consists of two panels with air in between and offers the advantages of low sound transmission at high frequencies, low heat transmission, and low weight. The double panel structure is widely used, such as in the aerospace and automotive industries. Nevertheless, the resonance of the cavity and the poor sound transmission loss at low frequencies limit the double panel's noise control performance. Applying active structural acoustic control to the panels or active noise control to the cavity has been discussed in many papers. In this paper, the resonances of the panels and the cavity are considered simultaneously to further reduce the transmitted noise through an existing double panel structure. A structural–acoustic coupled model is developed to investigate and compare various structural control and cavity control methods. Numerical analysis and real-time control results show that structural control should be applied to both panels. Three types of cavity control sources are presented and compared. The results indicate that the largest noise reduction is obtained with cavity control by loudspeakers modified to operate as incident pressure sources.  相似文献   

8.
马玺越  陈克安  丁少虎  张冰瑞 《物理学报》2013,62(12):124301-124301
基于平面声源的三层有源隔声结构系统易于实现且具有良好的低频隔声性能,实现该系统需解决的关键问题是误差信号的检测.本文将压电传感薄膜聚偏氟乙烯(polyvinylidene fluoride, PVDF)阵列检测简支梁辐射模态的理论拓展到二维结构, 并应用到三层隔声结构实现误差传感的优化设计.根据三层结构中特殊的能量传输规律, 对误差传感方案中目标函数的选取、PVDF数目确定以及传感系统优化等问题进行深入分析.研究表明, 由于辐射板能量主要集中在有限个振动模态上, 只需将少数经固定系数加权的PVDF薄膜输出电流求和即可获得前三阶辐射模态幅值.辐射模态幅值的检测值与理论值符合良好, 保证传感精度的同时有效简化了系统. 关键词: 三层有源隔声结构 误差传感策略 压电传感薄膜阵列 辐射模态  相似文献   

9.
Genetic algorithms (GAs) are employed to optimize locations of PZT actuators in an active structural acoustic control (ASAC) system comprising a cylindrical shell with an internal floor partition. The effect of PZT actuators is simulated using a bending model and an in-plane force model, respectively. The characteristics of the optimal placements of both models are discussed and compared. Numerical simulations demonstrate that for the investigated structure, the in-plane force model has a better control performance than the bending model in the low-frequency range. The underlying physics of the control results are analyzed. Considering the practical applicability of optimally designed ASAC systems, the control performance of the optimal configuration obtained at a single frequency is assessed in the low-frequency range between 100 and 500 Hz, with results showing a significant sound attenuation in the whole range of interest.  相似文献   

10.
The control of sound transmission through panels is an important noise control problem in the aerospace, aeronautical, and automotive industries. The trend towards using lightweight composite materials that have lower sound insulation performance is a negative factor regarding low frequency transmission loss. Double-panel partitions with the gap filled with sound absorption materials are often employed to improve the sound insulation performance with reduced added weight penalty. However, in the low frequency range, the strong coupling between the panels through the air cavity and mechanical paths may greatly reduce the sound transmission performance, making it even lower than the performance of a single panel in some frequency ranges. In this work, an experimental investigation of a new kind of hybrid (active/passive) acoustic actuator is presented. The idea consists of replacing the acoustic absorption material by a hybrid actuator aiming at improving the transmission loss at low frequencies without altering the passive attenuation. A prototype of the system is tested in a plane wave acoustic tube setup. Different kinds of SISO feedforward control implementations were used to attenuate the sound power transmitted through the hybrid active–passive panel using an error microphone or a particle velocity sensor placed downstream with respect to the sample panel. Measurement results of the transmission loss with active and hybrid attenuation are presented and discussed.  相似文献   

11.
This paper reports the binaural active noise control (ANC) system developed to deal with factory noise. The control points are located in the vicinity of the left and right ears of a worker sitting along the production line. Due to the complicated safety requirements in the factory, secondary sources and error microphones are not allowed to be placed near the worker. Therefore, the proposed ANC system employs the feedforward structure and adopts the parametric array loudspeakers (PALs) as the secondary sources. The PAL is a type of directional loudspeaker that generates a much narrower sound field as compared to the conventional loudspeaker. Once the proposed ANC system has been trained offline, the error microphones can be removed. The performance of the binaural ANC system is successfully demonstrated based on a digital signal processor (DSP) implementation.  相似文献   

12.
In this paper, the feasibility of using synthesized structural acoustic sensors (SSAS) for active noise control inside irregularly shaped enclosures is investigated. A SSAS consists of a cluster of inter-connected discrete PVDF elements, located on the surface of a vibrating structure enclosing a sound field. An optimal design ensures the sensor output to be directly related to the acoustical potential energy inside the enclosure. Hence, synthesized structural acoustic sensors can provide error signals for an active noise control system, and the use of microphones inside the enclosure can be avoided. A cylindrical shell with a floor partition, which can be used to model an aircraft cabin, is used as a test case. PZT actuators are used as control actuators. Both SISO (single input and single output) and MIMO (multi-input and multi-output) control systems are optimally designed using Genetic Algorithms and implemented with a Filtered-X Feedforward LMS (least-mean-square) controller. Their control performances are evaluated with different types of disturbances. To show the effectiveness of the optimal design approach, some non-optimal control systems are also tested and compared with the optimal one. It is shown that with optimally designed SSAS, an active structural acoustic control system can effectively reduce noise inside the enclosures without using any acoustic transducers.  相似文献   

13.
Ning Han  Xiaojun Qiu 《Applied Acoustics》2007,68(10):1297-1306
Active noise control systems have been applied to increase the insertion loss of noise barriers where the squared sound pressure or the total acoustic energy density is used as the cost function in previous works. The absolute value of the mean active sound intensity is chosen as the cost function to obtain extra sound insertion loss in the dark area of a hybrid active noise barrier system in this note. The strategy of minimizing the near-field sound intensity at discrete locations along the edge of the passive barrier is shown to be able to provide better far-field noise reduction than that of minimizing the squared sound pressure control. Both numerical simulations and off-line experiments are carried out with a three-channel demonstration system, where the locations of the secondary sources and the error sensors are optimized and comparisons are made between the extra sound pressure attenuation of the sound intensity control and that of the squared sound pressure control.  相似文献   

14.
This study attempted to control the radiated exterior noise from a rectangular enclosure in which an internal plate vibrates by acoustic excitation and noise is thus radiated from that plate. Multi-channel active control was applied to reduce the vibration and external radiation of this enclosed plate. A piezoelectric ceramic was used as a distributed actuator for multiple mode control of the vibration and radiated noise in the acoustically excited plate. To maximize the effective control, an approach was proposed for attachment the piezoelectric actuator in the optimal location. The plate and internal acoustic space in the enclosure are coupled with each other. This will change dominant frequency characteristics of the plate and, thus, those of the externally radiated noise. Active noise control was accomplished using an accelerometer attached to the plate and a microphone placed adjacent to that plate as an error sensor under acoustic excitation of sine wave and white noise. It was found that the control of radiated external radiation noise requires a microphone as an error sensor, a sound pressure sensor due to vibration of the plate, differences in the dominant frequency of externally radiated noise, and complex vibration modes of the plate.  相似文献   

15.
在利用近场超声悬浮技术搬运晶圆的过程中,为提高近场超声悬浮力,该文研究了气体物理性质与近场超声悬浮力之间的关系。利用声辐射压理论与流体力学理论对不同气体介质下的悬浮力进行建模与求解。搭建了可测量不同气体环境中悬浮力的实验平台。实验发现氩气环境下超声悬浮力平均值相对空气环境下提升24.8%。结合实验与理论计算分析了气体密度、比热容比、声速与动力黏度对悬浮力的影响,推断气体的比热容比为影响近场超声悬浮力的主要参数。该方法为晶圆搬运的环境适用性提供了参考价值。  相似文献   

16.
Active structural acoustic control(ASAC)is an efficient method in acoustic radiation control of coupled enclosure.In the past research of ASAC,the concept of "acoustic radiation mode(ARM)of coupled enclosure"was proposed,which was a set of basis functions of structural mode amplitude.However,there was an incompatibility with the ARM definition in free space radiation case which was a set of basic functions of normal velocity or pressure on the vibrating surface.Also,there was severe inconvenience for application as structural modes were required while accurate and useful structural modes were difficult to be extracted in practice.To overcome these problems,by analogy to ARM theory of free space,the acoustic potential energy was expressed in quadratic form of normal velocity on coupling surface and ARM of coupled enclosure was redefined.Furthermore,theoretic derivation showed that ARM of coupled enclosure could be replaced simply by corresponding acoustic mode projection of enclosure when the coupling surface was discretized into equal size elements.Therefore,the ARM theory of coupled enclosure which was consistent with that of free space and convenient for application was formed.Finally,numerical calculation was performed and the results proved that the presented theory was very efficient in ARM calculation of coupled enclosure and ASAC.  相似文献   

17.
参量阵扬声器在管道噪声控制中的研究*   总被引:3,自引:2,他引:1       下载免费PDF全文
武帅兵  吴鸣  杨军 《应用声学》2013,32(6):439-445
为了解决管道有源噪声控制中声反馈造成的系统复杂度和计算量的增加,文中引入参量阵扬声器作为次级声源,利用其强指向性减小控制系统的声反馈。为了验证该方法可行性,本文分别在直管和L管中,对600 Hz单频噪声和频率范围为500 Hz~1000 Hz的窄带噪声进行了管道有源噪声控制,同时测量了参量阵扬声器的管内声场和降噪范围。结果表明,参量阵扬声器声反馈小,在没有声反馈补偿的条件下对单频噪声的降噪效果基本达到了声反馈补偿条件下普通扬声器的降噪效果,对窄带噪声的降噪效果稍差。此外,通过测量管道声场和降噪量,确定了参量阵扬声器的降噪区域为误差传感器下游整个管道,降噪面积为管道整个截面。这说明参量阵扬声器作为次级声源降低了系统的复杂度和算法的计算量,并取得了较好的降噪效果。  相似文献   

18.
基于平面声源进行结构声辐射有源控制的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
李双  陈克安  赵树磊  胡莹 《应用声学》2008,27(5):363-373
采用分布式平面声源作为次级声源,对振动钢板的声辐射进行了抵消实验,验证了以往研究中的一系列关键理论。实验研究结果表明:一个平面声源可以控制钢板奇-奇模态的声辐射,两个平面源可以控制结构偶-奇或奇-偶模态的声辐射,同时也可以控制结构奇-奇模态的声辐射;平面声源的面积和布放位置对降噪效果有重要影响,采用单个平面声源控制时,平面声源面积越大,控制效果越好;基于近场声压的误差传感策略是有效可行的,实际中,将近场测量面的声功率作为有源控制的目标函数与总声功率作为目标函数是一致的;控制后远场声压和声强都得到有效降低,部分区域的声能向声源流动,近场声压及声强分布也发生显著变化。  相似文献   

19.
The purpose of this study is to explore the effects of sound elimination in a cylindrical duct by combining a reactive muffler and active noise control (ANC) system. Besides the exploration via experiment of the combined noise control system, a Grey prediction based on Grey theory is also applied to ANC for this hybrid system.In the experiment for this system, a combined adaptive algorithm is adopted. The results of sound elimination are compared between cases with ANC systems installed before the muffler and after the muffler. The results indicate that the sequence of arrangement of muffler can influence the results of active noise control. According to the results of experiment and simulation, the effect of noise reduction in ANC system is influenced extremely by reference signal received. The transmission loss and insertion loss in this system are also discussed in details. Besides, the experimental results indicate that the hybrid system has the advantages over a traditional muffler when the muffler is not designed for the frequency of the noise. Furthermore, the mathematic simulation for acoustic field in a cylindrical duct with a muffler is performed in order to verify the experiment results. Finally, Grey theory is applied to estimate the expected signals in order to perform a computer simulation of Grey prediction to explore effects of the ANC system. The results indicate that application of Grey theory gives a good control for the hybrid system.  相似文献   

20.
Flexural waves play a significant role for the radiation of sound from plates. The analysis of flexural wave fields enables the detection of sources and transmission paths in plate-like structures. The measurement of these wave fields can be carried out indirectly by means of near-field acoustic holography, which determines the vibrational wave field from pressure information measured in a plane close to the plate under investigation. The reconstruction of the plate vibration is usually obtained by inverting the forward radiation problem, i.e., by inversion of an integral operator. In this article, it is shown that a pressure measurement taken in the extreme near-field of a vibrating plate can directly be used for the approximate analysis of the dispersive flexural wave field. The inversion step of near-field acoustic holography is not necessarily required if such an approximate solution is sufficient. The proposed method enables fast and simple analysis of dispersion characteristics. Application of dispersion compensation to the measured field allows for visualizations of propagating wavefronts, such that sources and scatterers in the plate can be detected. The capabilities of the described approach are demonstrated on several measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号