首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mirror-like and pit-free non-polar a-plane (1 1 −2 0) GaN films are grown on r-plane (1 −1 0 2) sapphire substrates using metalorganic chemical vapor deposition (MOCVD) with multilayer high-low-high temperature AlN buffer layers. The buffer layer structure and film quality are essential to the growth of a flat, crack-free and pit-free a-plane GaN film. The multilayer AlN buffer structure includes a thin low-temperature-deposited AlN (LT-AlN) layer inserted into the high-temperature-deposited AlN (HT-AlN) layer. The results demonstrate that the multilayer AlN buffer structure can improve the surface morphology of the upper a-plane GaN film. The grown multilayer AlN buffer structure reduced the tensile stress on the AlN buffer layers and increased the compressive stress on the a-plane GaN film. The multilayer AlN buffer structure markedly improves the surface morphology of the a-plane GaN film, as revealed by scanning electron microscopy. The effects of various growth V/III ratios was investigated to obtain a-plane GaN films with better surface morphology. The mean roughness of the surface was 1.02 nm, as revealed by atomic force microscopy. Accordingly, the multilayer AlN buffer structure improves the surface morphology and facilitates the complete coalescence of the a-plane GaN layer.  相似文献   

2.
The authors report the growth of crack-free GaN on Si(1 1 1) substrate with step-graded AlGaN intermediate layers all grown at 1120 °C. By preparing all these layers at high-temperature, we can simplify the growth proceduce and minimize the growth time. Using X-ray diffraction and transmission electron microscopy, it was found that the high-temperature step-graded AlGaN intermediate layers can effectively reduce the tensile stress on GaN epitaxial layers. Photoluminescence and Raman measurements also indicate that we can improve the crystal quality of GaN by inserting the step-graded AlGaN intermediate layers.  相似文献   

3.
Impact of step height of silicon carbide (SiC) substrates on heteroepitaxial growth of aluminum nitride (AlN) was investigated. Step-and-terrace structures with various step heights, 6 monolayer (ML), 3ML and 1ML, were formed on 6H-SiC (0 0 0 1) vicinal substrates by high-temperature gas etching. 2H-AlN layers were grown on the substrate by plasma-assisted molecular-beam epitaxy (MBE) and then these layers were characterized by atomic-force microscopy (AFM) and X-ray diffraction (XRD). High-quality AlN can be grown on SiC substrates with 6ML- and 3ML-height step, while AlN grown on SiC substrates with 1ML-height step exhibited inferior crystalline quality. A model for high-quality AlN growth on SiC substrates with 3ML-height step is proposed.  相似文献   

4.
ZnO properties were investigated as a function of AlN buffer layer thickness (0–100 nm) in ZnO/AlN/Si(1 1 1) structures grown by metal organic vapor phase epitaxy. A significant improvement of ZnO film crystallinity by tuning AlN buffer thickness was confirmed by x-ray diffraction, topography and photoluminescence measurements. An optimal AlN buffer layer thickness of 50 nm is defined, which allows for growth of nearly strain-free ZnO films. The presence of free excitons at 10 K suggests high crystal quality for all ZnO samples grown on AlN/Si(1 1 1) templates. The intensities of neutral and ionized donor bound exciton lines are found to correlate with the in-plane and out-of-plane strain in the films, respectively.  相似文献   

5.
V. Palermo  A. Parisini 《Surface science》2006,600(5):1140-1146
SiC nanocrystals are grown at high temperature on Si(1 0 0) and Si(1 1 1) surfaces starting from a chemisorbed layer of methanol. The decomposition of this layer allows to have a well defined amount of carbon to feed SiC growth. Nanocrystals ranging from 10 nm to 50 nm with density from 100 μm−2 to 1500 μm−2 are obtained, and the total volume of produced SiC corresponds to carbon provided by the chemisorbed organic layer. Large differences in nanocrystal size and density, as well as in surface roughness, are observed depending on substrate orientation. The internal structure, crystallinity and epitaxy of nanocrystals grown on Si(1 0 0) are studied using cross-sectional transmission electron microscopy (XTEM), methanol adsorption and surface evolution using scanning tunnelling microscopy (STM). The joint application of XTEM and STM techniques allows a complete characterization of the geometry and chemical composition of these nanostructures.  相似文献   

6.
Template-based nanoscale epitaxy has been explored to realize high-quality GaN on Si(1 1 1) substrates. We have employed polystyrene-based nanosphere lithography to form the nano-hole array patterns on GaN/Si(1 1 1) template and then, subsequent regrowth of GaN is carried out by metalorganic chemical vapor deposition (MOCVD). During the initial growth stage of GaN on such nanopatterned substrates, we have observed formation of nanoislands with hexagonal pyramid shape due to selective area epitaxy. With further epitaxial regrowth, these nanoislands coalesce and form continuous GaN film. The overgrown GaN on patterned and non-patterned regions is characterized by high-resolution X-ray diffraction (HRXRD) and high-spatial resolution optical spectroscopic methods. Micro-photoluminescence (PL), micro-Raman scattering and scanning electron microscopy (SEM) have been used to assess the microstructural and optical properties of GaN. Combined PL and Raman data analyses show improved optical quality when compared to GaN simultaneously grown on non-patterned bulk Si(1 1 1). Such thicker GaN templates would be useful to achieve III-nitride-based opto- and electronic devices integrated on Si substrates.  相似文献   

7.
For the advance of GaN based optoelectronic devices, one of the major barriers has been the high defect density in GaN thin films, due to lattice parameter and thermal expansion incompatibility with conventional substrates. Of late, efforts are focused in fine tuning epitaxial growth and in search for a low temperature method of forming low defect GaN with zincblende structure, by a method compatible to the molecular beam epitaxy process. In principle, to grow zincblende GaN the substrate should have four-fold symmetry and thus zincblende GaN has been prepared on several substrates including Si, 3C-SiC, GaP, MgO, and on GaAs(0 0 1). The iso-structure and a common shared element make the epitaxial growth of GaN on GaAs(0 0 1) feasible and useful. In this study ion-induced conversion of GaAs(0 0 1) surface into GaN at room temperature is optimized. At the outset a Ga-rich surface is formed by Ar+ ion bombardment. Nitrogen ion bombardment of the Ga-rich GaAs surface is performed by using 2-4 keV energy and fluence ranging from 3 × 1013 ions/cm2 to 1 × 1018 ions/cm2. Formation of surface GaN is manifested as chemical shift. In situ core level and true secondary electron emission spectra by X-ray photoelectron spectroscopy are monitored to observe the chemical and electronic property changes. Using XPS line shape analysis by deconvolution into chemical state, we report that 3 keV N2+ ions and 7.2 × 1017 ions/cm2 are the optimal energy and fluence, respectively, for the nitridation of GaAs(0 0 1) surface at room temperature. The measurement of electron emission of the interface shows the dependence of work function to the chemical composition of the interface. Depth profile study by using Ar+ ion sputtering, shows that a stoichiometric GaN of 1 nm thickness forms on the surface. This, room temperature and molecular beam epitaxy compatible, method of forming GaN temperature can serve as an excellent template for growing low defect GaN epitaxial overlayers.  相似文献   

8.
First-principles pseudo-potential calculations within density-functional theory framework are performed in order to study the structural and electronic properties of nickel adsorption and diffusion on a GaN(0 0 0 1)-2×2 surface. The adsorption energies and potential energy surfaces are investigated for a Ni adatom on the Ga-terminated (0 0 0 1) surface of GaN. This surface is also used to study the effect of the nickel surface coverage. The results show that the most stable positions of a Ni adatom on GaN(0 0 0 1) are at the H3 sites and T4 sites, for low and high Ni coverage respectively. In addition, confirming previous experimental results, we have found that the growth of Ni monolayers on the GaN(0 0 0 1) surface is possible.  相似文献   

9.
Magnetization reversal processes and domain structures have been studied in Mo(1 1 0)/Co(0 0 0 1)/Au(1 1 1) structures grown by molecular beam epitaxy on monocrystalline (11–20) sapphire substrates. Wedge-shaped samples with different Co thickness gradients relative to the Mo [0 0 1] direction were fabricated. Observation of the domain structure was performed at room temperature using Kerr microscopy in a Co thickness range varying from 5 to 50 nm, where the magnetization is oriented in the plane of the sample. A Co thickness-dependent coercivity field was determined through analysis of the domain wall position during the reversal process. A preferential orientation of magnetic domain walls was found, with the domains being needle-like. The orientation, as well as the size of the needles, depends on the Co thickness and the orientation of the magnetic field applied in the sample plane.  相似文献   

10.
Using scanning tunneling microscopy, growth of In nanoisland arrays on the Si(1 0 0)-c(4 × 12)-Al surface has been studied for In coverage up to 1.1 ML and substrate temperature from room temperature to 150 °C. In comparison to the case of In deposition onto the clean Si(1 0 0) surface or Si(1 0 0)4 × 3-In reconstruction, the In growth mode is changed by the c(4 × 12)-Al reconstruction from the 2D growth to 3D growth, thus displaying a vivid example of the Volmer-Weber growth mode. Possible crystal structure of the grown In nanoislands is discussed.  相似文献   

11.
CdTe thin films were grown on GaAs (1 0 0) substrates by using molecular beam epitaxy at various temperatures. The bright-field transmission electron microscopy (TEM) images and the high-resolution TEM (HRTEM) images showed that the crystallinity of CdTe epilayers grown on GaAs substrates was improved by increasing the substrate temperature. The result of selected-area electron diffraction pattern (SADP) showed that the orientation of the grown CdTe thin films was the (1 0 0) orientation. The lattice constant the strain, and the stress of the CdTe thin film grown on the GaAs substrate were determined from the SADP result. Based on the SADP and HRTEM results, a possible atomic arrangement for the CdTe/GaAs heterostructure is presented.  相似文献   

12.
One-dimensional Ce nanowires have been grown on a single-domain vicinal Si(1 0 0) surface. The growth mode, including the structural and electronic properties as a function of the substrate temperature and Ce coverage, was studied using scanning tunneling microscopy and scanning tunneling spectroscopy. The results show the formation of Ce nanowires along the step edges on the vicinal Si(1 0 0) substrate at 580 °C.  相似文献   

13.
The electrical and magnetic properties of thin iron (Fe) films have sparked significant scientific interest. Our interest, however, is in the fundamental interactions between light and matter. We have discovered a novel application for thin Fe films. These films are sources of terahertz (THz) radiation when stimulated by an incident laser pulse. After intense femtosecond pulse excitation by a Ti:sapphire laser, these films emit picosecond, broadband THz frequencies. The terahertz emission provides a direct measure of the induced ultrafast change in magnetization within the Fe film. The THz generation experiments and the growth of appropriate thin Fe films for these experiments are discussed. Several criteria are used to select the substrate and film growth conditions, including that the substrate must permit the epitaxial growth of a continuous, monocrystalline or single crystal film, yet must also be transparent to the emitted THz radiation. An Fe(0 0 1) film grown on the (0 0 1) surface of a magnesium oxide (MgO) substrate makes an ideal sample. The Fe films are grown by physical vapor deposition (PVD) in an ultrahigh vacuum (UHV) system. Low energy electron diffraction (LEED) and Auger electron spectroscopy (AES) are used to characterize the Fe(0 0 1) films. Two substrate surface preparation methods are investigated. Fe(0 0 1) films grown on MgO(0 0 1) substrates that are used as-received and films grown on MgO(0 0 1) substrates that have been UV/ozone-cleaned ex vacuo and annealed in vacuo produce the same results in the THz generation experiments. Either substrate preparation method permits the growth of samples suitable for the THz emission experiments.  相似文献   

14.
Growth and surface morphology of epitaxial Fe(1 1 0)/MgO(1 1 1)/Fe(1 1 0) trilayers constituting a magnetic tunnel junction were investigated by low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM). STM reveals a grain-like growth mode of MgO on Fe(1 1 0) resulting in dense MgO(1 1 1) films at room temperature as well as at 250 °C. As observed by STM, initial deposition of MgO leads to a partial oxidation of the Fe(1 1 0) surface which is confirmed by Auger electron spectroscopy. The top Fe layer deposited on MgO(1 1 1) at room temperature is relatively rough consisting of clusters which can be transformed by annealing to an atomically flat epitaxial Fe(1 1 0) film.  相似文献   

15.
The growth of epitaxial GaN films on (0 0 0 1)-sapphire has been investigated using X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED). In order to investigate the mechanism of the growth in detail, we have focused on the nitridation of pre-deposited Ga layers (droplets) using ion beam-assisted molecular beam epitaxy (IBA-MBE). Comparative analysis of XPS core-level spectra and LEED patterns reveals, that nitride films nucleate as epitaxial GaN islands. The wetting of the surface by GaN proceeds via reactive spreading of metallic Ga, supplied from the droplets. The discussed growth model confirms, that excess of metallic Ga is beneficial for GaN nucleation.  相似文献   

16.
Scanning electron microscopy (SEM) images, transmission electron microscopy (TEM) images, and selected-area electron diffraction (SAED) patterns showed that vertically well aligned GaN nanorods with c-axis-oriented crystalline wurzite structures were grown on Si(1 1 1) substrates by using hydride vapor phase epitaxy. The high-resolution TEM (HRTEM) images showed that the crystallized GaN nanorods contained very few defects and that they were consisted of , {0 0 0 1}, and { } facets. The formation mechanisms for the GaN nanorods grown on Si(1 1 1) substrates are described on the basis of the SEM, TEM, SAED pattern, and HRTEM results.  相似文献   

17.
The adsorption and decomposition of ethanethiol on GaN (0 0 0 1) surface have been investigated with first-principles calculations. The DFT calculations reveal that ethanethiol adsorbs dissociatively on the clean GaN (0 0 0 1) surface to form ethanethiolate and hydrogen species. An up limit coverage of 0.33 for ethanethiolate monolayer on GaN (0 0 0 1) surface is obtained and the position of the sulfur atom and the tilt angle of the thiolate chain are found to be very sensitive to the surface coverage. Furthermore, the reactivity of ethanethiol adsorption and further thermal decomposition reactions on GaN (0 0 0 1) surface is discussed by calculating the possible reaction pathways and ethene is found to be the major product.  相似文献   

18.
J. Ben Ali  A. Nougaoui  D. Bria 《Surface science》2009,603(15):2318-2326
We study the acoustic waves of superlattices grown along the [0 0 1] direction and formed by slabs of cubic III-V nitride. We consider structures formed by combining AlN, GaN and InN in the zinc-blende structure because of the possible applications of these materials. The anisotropy of the materials has been taken into account and the different propagation directions including symmetry directions and general directions have been considered. The dispersion relations for these propagation directions have been obtained. The evolution of gaps along the propagation directions is studied. Total gaps for some propagation directions and frequency ranges are found in GaN-InN superlattices.  相似文献   

19.
Miniaturizing of electronic devices requires that conductive elements maintain advanced electrical characteristics upon reducing their geometrical sizes. For gold, which is valued for its high electrical conductivity and stability against ambient conditions, creation of extra-thin films on silicon is hampered by formation of the quite complex Au/Si interface. In the present work, by forming a Si(1 1 1)5.55 × 5.55-Cu surface reconstruction prior to Au deposition we formed Au films with smoother surface morphology and higher surface conductivity compared to Au film grown on a pristine Si(1 1 1)7 × 7 surface. Scanning tunnelling microscopy and four-point probe measurements were used to characterize the growth mode of the Au film on a Si(1 1 1)5.55 × 5.55-Cu reconstruction at room temperature.  相似文献   

20.
We have studied the electronic band structure of the ideal (0 0 1) surface of AlN, GaN and InN in the zinc-blende phase. We have employed an empirical sp3sd5 Hamiltonian with nearest-neighbor interactions including spin-orbit coupling and the surface Green function matching method. We have obtained the different surface states together with their corresponding orbital character and localization in the different layers. A similar physical picture is obtained for the three materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号