首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学   3篇
物理学   5篇
  2021年   1篇
  2018年   2篇
  2013年   1篇
  2012年   3篇
  2006年   1篇
排序方式: 共有8条查询结果,搜索用时 0 毫秒
1
1.

In this paper we present an independent scheme for constructing fractional parentage coefficients using symmetry group apparatus in translationally invariantmodel space, suitable for the six-particle system composed of three-particle bi-clusters, where the presented subsystems have their own intrinsic clusterization. Simple expressions for corresponding antisymmetrization procedure are presented as well as computational results.

  相似文献   
2.
Peptides attached to a cysteine hydrazide ‘transporter module’ are transported selectively in either direction between two chemically similar sites on a molecular platform, enabled by the discovery of new operating methods for a molecular transporter that functions through ratcheting. Substrate repositioning is achieved using a small-molecule robotic arm controlled by a protonation-mediated rotary switch and attachment/release dynamic covalent chemistry. A polar solvent mixtures were found to favour Z to E isomerization of the doubly-protonated switch, transporting cargo in one direction (arbitrarily defined as ‘forward’) in up to 85% yield, while polar solvent mixtures were unexpectedly found to favour E to Z isomerization enabling transport in the reverse (‘backward’) direction in >98% yield. Transport of the substrates proceeded in a matter of hours (compared to 6 days even for simple cargoes with the original system) without the peptides at any time dissociating from the machine nor exchanging with others in the bulk. Under the new operating conditions, key intermediates of the switch are sufficiently stabilized within the macrocycle formed between switch, arm, substrate and platform that they can be identified and structurally characterized by 1H NMR. The size of the peptide cargo has no significant effect on the rate or efficiency of transport in either direction. The new operating conditions allow detailed physical organic chemistry of the ratcheted transport mechanism to be uncovered, improve efficiency, and enable the transport of more complex cargoes than was previously possible.

Peptides are transported in either direction between chemically similar sites on a molecular platform, substrate repositioning is achieved using a cysteine hydrazide transporter module and a small-molecule robotic arm controlled by a rotary switch.  相似文献   
3.
4.
We report on a one-step hydrothermal growth of one-dimensional (1D) WO3 nanostructures, using urea as 1D growth-directing agent and a precursor free of metals other than tungsten. By decreasing the pH of the starting solution, the size of the nanostructures was reduced significantly, this development being accompanied by the realization of phase pure hexagonal WO3 nanorods (elimination of monoclinic impurity phase) and a red shift in optical absorption edge. Surface analyses indicated the presence of reduced tungsten species in the WO3 nanostructures, which increased two-fold in a hydrated WO3 phase obtained with further decrease in pH. We suggest that oxygen vacancies are responsible for this defect state in WO3, while protons are responsible or contribute significantly to the same in the hydrated phase.  相似文献   
5.
Superelectrophiles: Formamides were designed that when treated with triflic anhydride would be transformed into superelectrophilic amidine dications. These dications were so electrophilic that they underwent in?situ dealkylation by the triflate anion (see scheme; Tf=trifluoromethanesulfonyl). DFT calculations were used to determine the mechanistic details of the dealkylation reaction.  相似文献   
6.
We report on optically induced nucleation and expansion of stacking faults in hexagonal SiC structures. The activation energy for partial dislocation glide under optical excitation is found to reduce to 0.25 +/- 0.05 eV, which is about 2 eV lower than for pure thermal activation. From the measurements of thermal activation and below-gap excitation spectroscopy of dislocation glide, we conclude that the elementary process controlling expansion of stacking faults is kink pair nucleation aided by the phonon-kick mechanism. We propose that solitons on 30 degrees Si(g) partials with a silicon core act as deep 2.4 eV + Ev trap sites, readily providing electron-hole recombination energy to enhance the motion of dislocations. Our results suggest that this is a general mechanism of structural degradation in hexagonal SiC.  相似文献   
7.
Nanocrystalline Cu6PS5I powder has been mixed with As2S3 semiconducting glass to obtain nanocomposite. Surface of the obtained sample has been photographed by scanning electron microscope. Electrical properties of Cu6PS5I–As2S3 nanocomposite have been measured using two- and four-probe methods. The obtained results were analyzed by fitting the experimental data to the equivalent circuit model. Warburg impedance element described Cu6PS5I nanoparticles, and the phase transition of this material was indicated.  相似文献   
8.
ZnO properties were investigated as a function of AlN buffer layer thickness (0–100 nm) in ZnO/AlN/Si(1 1 1) structures grown by metal organic vapor phase epitaxy. A significant improvement of ZnO film crystallinity by tuning AlN buffer thickness was confirmed by x-ray diffraction, topography and photoluminescence measurements. An optimal AlN buffer layer thickness of 50 nm is defined, which allows for growth of nearly strain-free ZnO films. The presence of free excitons at 10 K suggests high crystal quality for all ZnO samples grown on AlN/Si(1 1 1) templates. The intensities of neutral and ionized donor bound exciton lines are found to correlate with the in-plane and out-of-plane strain in the films, respectively.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号