首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We measured the evolution of in situ surface stress of Ag thin film during the magnetron sputter deposition. The measurement of force per width of Ag thin film showed that both the surface state and surface stress of Ag layer can be controlled through the variation of the deposition conditions such as the deposition temperature and rate. At room temperature, the force per width curve of Ag film deposited to 1 Å/s showed a typical curve consisting of three stages of surface stress. A brief presence of initial compressive stage and broad tensile maximum resulting in a compressive state had a tendency to disappear with increasing the deposition temperature. Meanwhile, a development of final compressive stage was more at higher temperature. Similar effect was observed but less obvious on increasing the deposition rate.  相似文献   

2.
Ya Yan 《Applied Surface Science》2007,253(10):4677-4679
A simple route to the high quality Ag film was developed at room temperature by using Ag nanoparticles stabilized by polyvinylpyrrolidone (PVP) as Ag source. The scanning electron microscopy (SEM) images indicate that the silver film prepared on the quartz substrate is smooth and dense. Meanwhile, the X-ray diffraction (XRD) of the film shows a face-centered cubic (fcc) phase of Ag.  相似文献   

3.
The CeO2/TiO2 and TiO2/CeO2 interface composite films were prepared on glass substrates by the sol-gel process via dip-coating and calcining technique. The scanning electron microscopy (SEM) revealed that the TiO2 layer has a compact and uniformity glasslike surface with 200 nm in thickness, and the CeO2 layer has a coarse surface with 240 nm in thickness. The X-ray diffractometer (XRD) analysis showed that the TiO2 layer is made up of anatase phase, and the CeO2 layer is structured by cubic fluorite phase. Through a series of photo-degradation experiments, the relationship of the photocatalytic activity with the constituents of the films was studied. In virtue of the efficient interfacial charge separation via the process of electron transfer from TiO2 to CeO2, the photocatalytic activity of the CeO2/TiO2 composite film is high. Contrarily, the photocatalytic activity of the TiO2/CeO2 composite film is low, due to its inert surface made up of CeO2 with broad bandwidth. Apart from the effect of the film structure, the effect of film thickness on photocatalytic activity was also discussed.  相似文献   

4.
Effects of alumina and chromium interlayers on the microstructure and optical properties of thin Ag films are investigated by using spectrophotometry, x-ray diffraction and AFM. The characteristics of Ag films in Ag/glass, Ag/l2O3/glass and Ag/Cr/glass stacks are analysed. The results indicate that the insertion of an Al2O3 or Cr layer decreases the grains and influences the reflectance of Ag films. The reflectance of the Ag film can be increased by controlling the thickness of alumina interlayer. The stability of Ag films is improved and the adhesion of Ag films on glass substrates is enhanced by alumina as an interlayer.  相似文献   

5.
Surface roughness caused by the grain growth of the RuCr non-magnetic intermediate layer (NMIL) was evaluated using the X-ray total reflection method. In the case of Ru NMIL, the value of root mean square roughness of NMIL (σ) increases from 0.59 to 1.45 nm with increase in Ar gas pressure and/or thickness of the Ru layer. Judging from the loop slope and normalized coercivity, the degree of magnetic isolation increases as σ increases, independent of the Cr content of a RuCr NMIL. Furthermore, it was found that σ of NMIL is strongly correlated with wettability to the seed layer material and is enhanced by the lattice extension of NMIL.  相似文献   

6.
The field emission properties of electrophoretic deposition(EPD) carbon nanotubes (CNTs) film have been improved by depositing CNTs onto the titanium (Ti)-coated Si substrate, followed by vacuum annealing at 900 °C for 2 h, and the enhanced emission mechanism has been studied using X-ray diffraction (XRD), scanning electron microscope (SEM) and Raman spectroscopy. Field emission measurements showed that the threshold electric field was decreased and the emission current stability was improved compared to that of EPD CNTs film on bare Si substrate. XRD and Raman spectroscopy investigations revealed that vacuum annealing treatment not only decreased the structural defects of CNTs but made a titanium carbide interfacial layer formed between CNTs and substrate. The field emission enhancement could be attributed to the improved graphitization of CNTs and the improved contact properties between CNTs and substrate including electrical conductivity and adhesive strength due to the formed conductive titanium carbide.  相似文献   

7.
A simple and well-designed synthesis procedure is proposed to fabricate silicalite-1 films on porous α-Al2O3 substrates on purpose of preventing the aluminum leaching. The continuous and 2 μm thick seed layer of silicalite-1 crystals is fabricated by using a spin coater. The first-time seeded growth is performed to synthesize a thin layer of intergrown ZSM-5 crystals on the silicalite-1 seed layer, where the use of low alkalinity and short synthesis time is to reduce the aluminum leaching. The intergrown layer of ZSM-5 crystals serves as a barrier to block the aluminum leaching from porous α-Al2O3 substrates in the second-time seeded growth, leading to the formation of ca. 11 μm thick intergrown and oriented silicalite-1 films with an extremely high Si/Al ratio. According to SEM images and XRD measurements, the as-synthesized silicalite-1 film is dense, continuous, and (1 0 1)-oriented. The electron probe microanalysis (EPMA) of the resulting film demonstrates that there is no aluminum leaching in the second-time seeded growth. The leaking tests confirm that non-zeolitic pores in the silicalite-1 film are negligible.  相似文献   

8.
Vertically aligned, c-axis oriented zinc oxide (ZnO) nanowires were grown on Si substrate by metal organic chemical vapor deposition (MOCVD) technique, where sputtered aluminum nitride (AlN) film was used as an intermediate layer and thermally evaporated barium fluoride (BaF2) film as a sacrificial layer. The aspect ratio and density of the nanowires were also varied using only Si microcavity without any interfacial or sacrificial layer. The UV detectors inside the microcavity have shown the higher on-off current ratio and fast photoresponse characteristics. The photoresponse characteristics were significantly varied with the aspect ratio and the density of nanowires.  相似文献   

9.
Carbon nanotubes (CNTs) were modified by depositing a thin layer of titanium film on the surface using magnetron sputtering method, followed by vacuum annealing at 900 °C for 2 h. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) confirmed that the as-deposited thin titanium film reacted with carbon atoms to form titanium carbide after annealing. The experiment results show that the thickness of sputter-deposited titanium film has significant effect on the field emission J-E characteristic of modified CNTs film. The titanium carbide-modified CNTs film obtained by controlling the titanium sputtering time to 2 min showed an improved field emission characteristics with a significant reduction in the turn-on electric field and an obvious increase in the emission current density as well as an improvement in emission stability. The improvement of field emission characteristics achieved is attributed to the low work function and good resistance to ion bombardment of titanium carbide.  相似文献   

10.
It is reported that the direct contact between Al and amorphous silicon (a-Si) enhances the crystallization of a-Si films. But the polycrystalline silicon (poly-Si) films crystallized by the direct contact of Al metal film suffer the problems of rough surface. In our study, we utilized the AlCl3 vapor during the a-Si films deposition instead of Al metal film to enhance crystallization. X-ray diffraction (XRD) shows that the AlCl3 vapor so successfully enhanced the crystallization of a-Si films that the crystallization was completed in 5 h at 540 °C. And the orientation of the poly-Si film deposited with AlCl3 vapor is much more random than that of annealed with Al metal under layer. But the average grain size is much larger than that. Moreover, the surface of the AlCl3-induced crystallized poly-Si film was much smoother than that of the Al-induced poly-Si film. The Al and Cl incorporation into the poly-Si film was confirmed using X-ray photoelectron spectroscopy (XPS) and found that the quantity of Al and Cl incorporated into the Si film was below the detection limit of XPS.  相似文献   

11.
In this work, we present the formation of porous layers on hydrogenated amorphous SiC (a-SiC: H) by Ag-assisted photochemical etching using HF/K2S2O8 solution under UV illumination at 254 nm wavelength. The amorphous films a-SiC: H were elaborated by d.c. magnetron sputtering using a hot pressed polycrystalline 6H-SiC target. Because of the high resistivity of the SiC layer, around 1.6 MΩ cm and in order to facilitate the chemical etching, a thin metallic film of high purity silver (Ag) has been deposited under vacuum onto the thin a-SiC: H layer. The etched surface was characterized by scanning electron microscopy, secondary ion mass spectroscopy, infrared spectroscopy and photoluminescence. The results show that the morphology of etched a-SiC: H surface evolves with etching time. For an etching time of 20 min the surface presents a hemispherical crater, indicating that the porous SiC layer is perforated. Photoluminescence characterization of etched a-SiC: H samples for 20 min shows a high and an intense blue PL, whereas it has been shown that the PL decreases for higher etching time. Finally, a dissolution mechanism of the silicon carbide in 1HF/1K2S2O8 solution has been proposed.  相似文献   

12.
ZnO thin films were deposited by thermal evaporation of a ZnO powder. The as-deposited films are dark brown, rich zinc and present a low transmittance. Then, these films were annealed in air atmosphere at different temperatures between 100 and 400 °C. Their microstructure and composition were studied using XRD and RBS measurements respectively. By increasing the temperature, it was found that film oxidation starts at 250 °C. XRD peaks related to ZnO appear and peaks related to Zn decrease. At 300 °C, zinc was totally oxidised and the films became totally transparent. The electrical conductivity measurement that were carried out in function of the annealing temperature showed the transition from highly conductive Zn thin film to a lower conductive ZnO thin film. The optical gap (Eg) was deduced from the UV-vis transmittance, and its variation was linked to the formation of ZnO.  相似文献   

13.
Ag(TCNQ) and Cu(TCNQ) nanowires were synthesized via vapor-transport reaction method at a low temperature of 100 °C. Field emission properties of the as-obtained nanowires on ITO glass substrates were studied. The turn-on electric fields of Ag(TCNQ) and Cu(TCNQ) nanowires were 9.7 and 7.6 V/μm (with emission current of 10 μA/cm2), respectively. The turn-on electric fields of Ag(TCNQ) and Cu(TCNQ) nanowires decreased to 6 and 2.2 V/μm, and the emission current densities increased by two orders at a field of 8 V/μm with a homogeneous-like metal (e.g. Cu for Cu(TCNQ)) buffer layer to the substrate. The improved field emission is due to the better conduct in the nanowires/substrate interface and higher internal conductance of the nanowires. The patterned field emission cathode was then fabricated by localized growing M-TCNQ nanowires onto mask-deposited metal film buffer layer. The emission luminance was measured to be 810 cd/m2 at a field of 8.5 V/μm.  相似文献   

14.
Ag particles were generated on Ag+-doped polyimide film by laser direct writing, followed by selective copper deposition using the metallic silver particles as seeds. Laser irradiation caused in situ reduction and agglomeration of silver on the polyimide film. The copper lines were less uniform and compact with higher scanning velocity and the width of the deposited copper line could reach 25 μm. Equations of the relationship between scanning velocity and connectivity of the deposited copper patterns have been derived. The process was characterised by AFM, XPS, SEM, and semiconductor characterisation system.  相似文献   

15.
ITO thin films and ITO/Ag/ITO multilayered films were prepared on glass substrate by reactive thermal evaporation technique without intentionally heating the substrate. After deposition the films were annealed in air at three different temperatures (300°C, 420°C and 540°C). The thickness of each layer in the ITO/Ag/ITO films was kept constant at 50 nm/10 nm/40 nm. The opto-electrical and structural properties of ITO/Ag/ITO multilayered films were compared with conventional ITO single-layer films. Although both films had identical thickness, 100 nm, the ITO/Ag/ITO films showed a lower resistivity. XRD spectra showed that Ag intermediate layer had a small effect on crystalline properties of ITO/Ag/ITO films.  相似文献   

16.
The polyacrylonitrile (PAN) fabric coated with ZnO-Ag composite was achieved by hydrothermal synthesis techniques and photochemical method. The PAN fabrics coated with ZnO-Ag composite were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), UV-vis spectrophotometer and fabric induced static tester, respectively. The SEM images revealed the formation of the coating aggregates on the fiber surface. The FT-IR spectra and XRD patterns revealed the chemical structures of the coatings on the PAN fabrics. The results of UV-vis test showed that there was an obvious increase in ultraviolet resistant properties after coating. The antistatic properties results revealed the improvement in the antistatic performance of coated fabrics, attributed to the superior electrical and optical properties of ZnO and Ag.  相似文献   

17.
Sculptured copper thin films were deposited on glass substrates, using different deposition rates. The nano-structure and morphology of the films were obtained, using X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Their optical properties were measured by spectrophotometry in the spectral range of 340-850 nm. The real and imaginary refractive indices, film thickness and fraction of metal inclusion in the film structure were obtained from optical fitting of the spectrophotometer data.  相似文献   

18.
YVO4:Sm3+ films were deposited on Al2O3 (0 0 0 1) substrates at various oxygen pressures changing from 13.3 to 46.6 Pa by using the pulsed laser deposition method. The crystallinity and surface morphology of these films were investigated by means of X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. The XRD pattern confirmed that YVO4:Sm3+ film has zircon structure and the AFM study revealed that the films consist of homogeneous grains ranging from 100 to 400 nm. The room temperature photoluminescence (PL) spectra showed that the emitted radiation was dominated by a reddish-orange emission peak at 602 nm radiating from the transition of (4G5/26H7/2). The crystallinity, surface morphology, and photoluminescence spectra of thin-film phosphors were highly dependent on the deposition conditions, in particular, the substrate temperature. The surface roughness and photoluminescence intensity of these films showed similar behavior as a function of oxygen pressure.  相似文献   

19.
The formation of the Si(111) √3 Ag intermediate layer occurs by two-dimensional nucleation and is not completed before one monolayer. The density of the Ag 4d band is fully developed at a substrate temperature of 800 K but not yet at 525 K. At lower temperatures an intermediate layer is also formed, but with different geometry and density of states. The development of the Ag band structure with film thickness and cluster size is discussed.  相似文献   

20.
Nd-Fe-B is a promising material system for the preparation of thin films with good hard magnetic properties. One problem of this material class is the sensitivity against oxidation, resulting in a degradation of the magnetic properties. Using XPS depth profiling in combination with peak-shape analysis it is shown that already after several hours oxygen can diffuse deep into the thin laser-deposited films and that Nd is mainly responsible for the oxidation. Local element analysis with AES revealed boron inhomogeneities from droplet formation during laser deposition. These problems can be solved by using a capping Cr layer and an FeB target for thin film preparation, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号