首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Needle-like SrAl2O4:Eu2+, Dy3+ phosphors had been prepared by calcining the precursors obtained from hydrothermal process at the temperature of 1100 °C in a weak reductive atmosphere of active carbon. The crystal structure, morphology and optical properties of the composites were characterized. X-ray diffraction (XRD) patterns illustrated that the single-phase SrAl2O4 was formed at 1100 °C, which is much lower than that prepared by the traditional method. The transmission electron microscope (TEM) observation revealed the precursors and the resulted SrAl2O4:Eu2+, Dy3+ phosphors had well-dispersed distribution and needle-like morphology with an average diameter about 150 nm at the center and the length up to 1 μm. After irradiation by ultraviolet radiation with 350 nm for 5 min, the phosphors emit green color long-lasting phosphorescence corresponding to the typical emission of Eu2+ ion, both the PL spectra and luminance decay revealed that the phosphors had efficient luminescent and long lasting properties.  相似文献   

2.
Long persistent SrAl2O4:Eu2+ phosphors co-doped with Dy3+ were prepared by the solid state reaction method. The main diffraction peaks of the monoclinic structure of SrAl2O4 were observed in all the samples. The broad band emission spectra at 497 nm for SrAl2O4:Eu2+, Dy3+ were observed and the emission is attributed to the 4f65d1 to 4f7 transition of Eu2+ ions. The samples annealed at 1100–1200 °C showed similar broad TL glow curves centered at 120 °C. The similar TL glow curves suggest that the traps responsible for them are similar. The long afterglow displayed by the phosphors annealed at different temperatures, may be attributed to the Dy3+ ions acting as the hole trap levels, which play an important role in prolonging the duration of luminescence.  相似文献   

3.
Current radiation dosimetry methods involve the release of trapped charge carriers in the form of electrons-holes pairs generated by irradiation exposure of the dosimetric materials. Thermal and optical stimulations of the irradiated material freed the trapped charges that eventually recombine with interband centers producing the emission of light. The integrated intensity of the emitted light is proportional to the radiation dose exposure. In this work, we present an UV radiation dosimetry technique based on the characteristic persistence luminescence (PLUM) 4f65d1→4f7 electronic transition of Eu2+ ions in SrAl2O4:Eu2+, Dy3+. The dose assessment is carried out by measuring the PLUM signal integrated during a certain time. The PLUM performance of SrAl2O4:Eu2+, Dy3+ phosphor exhibited a linear behavior for the first 50 s of UV irradiation. For higher UV time exposure the behavior is sublinear with no apparent saturation during a 10 min period. The PLUM dosimetry response was performed at 400 nm that corresponds to the main band component of the PLUM excitation spectrum in the 250-500 nm range. The main advantage of a dosimeter device based on the PLUM of SrAl2O4:Eu2+, Dy3+ is that neither thermal nor optical stimulation is required, avoiding the need of cumbersome electronic photo/thermal stimulation equipment. Due to the highly efficient 250-500 nm PLUM response of SrAl2O4:Eu2+, Dy3+, it could have potential application as UV radiation dosimeter in the UV range of grate human health concerns caused by UV solar radiation.  相似文献   

4.
Combustion method was used in this study to prepare BaAl2O4:Eu2+ phosphors co-doped with different trivalent rare-earths (Re3+=Dy3+, Nd3+, Gd3+, Sm3+, Ce3+, Er3+, Pr3+ and Tb3+) ions at an initiating temperature of 600 °C. The phosphors were annealed at 1000 °C for 3 h. As confirmed from the X-ray diffraction (XRD) data, both as prepared and post annealed samples crystallized in the well known hexagonal structure of BaAl2O4. All samples exhibited bluish-green emission associated with the 4f65d1→4f7 transitions of Eu2+ at ∼500 nm. Although the highest intensity was observed from Er3+ co-doping, the longest afterglow (due to trapping and detrapping of charge carriers) was observed from Nd3+ followed by Dy3+ co-doping. The traps responsible for the long afterglow were studied using thermoluminescence (TL) spectroscopy.  相似文献   

5.
In this study, SrAl2O4:Eu2+,Dy3+ thin film phosphors were deposited on Si (1 0 0) substrates using the pulsed laser deposition (PLD) technique. The films were deposited at different substrate temperatures in the range of 40-700 °C. The structure, morphology and topography of the films were determined by using X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). Photoluminescence (PL) data was collected in air at room temperature using a 325 nm He-Cd laser as an excitation source. The PL spectra of all the films were characterized by green phosphorescent photoluminescence at ∼530 nm. This emission was attributed to 4f65d1→4f7 transition of Eu2+. The highest PL intensity was observed from the films deposited at a substrate temperature of 400 °C. The effects of varying substrate temperature on the PL intensity were discussed.  相似文献   

6.
SrAl2O4:Eu2+,Dy3+ thin films were grown on Si (1 0 0) substrates using the pulsed laser deposition (PLD) technique to investigate the effect of vacuum, oxygen (O2) and argon (Ar) deposition atmospheres on the structural, morphological, photoluminescence (PL) and cathodoluminescence (CL) properties of the films. The films were ablated using a 248 nm KrF excimer laser. Atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS) and fluorescence spectrophotometry were used to characterize the thin films. Auger electron spectroscopy (AES) combined with CL spectroscopy were employed for the surface characterization and electron-beam induced degradation of the films. Better PL intensities were obtained from the unannealed films prepared in Ar and O2 atmospheres with respect to those prepared in vacuum. A stable green emission peak at 515 nm, attributed to 4f65d1→4f7 Eu2+ transitions were obtained with less intense peaks at 619 nm, which were attributed to transitions in Eu3+. After annealing the films prepared in vacuum at 800 °C for 2 h, the intensity of the green emission (520 nm) of the thin film increased considerably. The amorphous thin film was crystalline after the annealing process. The CL intensity increased under prolonged electron bombardment during the removal of C due to electron stimulated surface chemical reactions (ESSCRs) on the surface of the SrAl2O4:Eu2+, Dy3+ thin films. The CL stabilized and stayed constant thereafter.  相似文献   

7.
The performance of nanophase luminophors is usually compromised by environmentally induced degradation. In this study, composites of low density polyethylene (LDPE) with various concentrations of the blue-emitting europium and dysprosium co-doped strontium aluminate (SrAl2O4:Eu2+,Dy3+) phosphor were investigated. The blue long-lasting phosphorescence of the composites was observed in the dark after removal of the excitation light. X-ray diffraction analysis revealed the presence of the SrAl2O4 phase in the composites. PL spectra of the composites have two sets of peaks, major broad bands peaking at about 4855 Å and minor ones at wavelengths between 4115 and 4175 Å, attributed to the 4f-5d transition of Eu2+. DSC and TGA results show that the introduction of the phosphor in LDPE matrix caused a slight reduction in the crystallinity of LDPE but a significant increase in the stability of the composites.  相似文献   

8.
In this article, Sr2CeO4:x mol% Eu3+ and Sr2CeO4:5 mol%Eu3+, 3 mol% Dy3+ phosphors were synthesized from assembling hybrid precursors by wet chemical method. As-prepared samples present uniform grain-like morphology and the particle size is about 0.2 μm. The luminescence spectra of Sr2CeO4:x mol% Eu3+ have been measured to examine the influence of the intensity of red emission lines for Eu3+ on the concentration of Eu3+, showing that the intensity of the red emission increases with an increase of the concentration from 1 to 5 mol%. Additionally, from the emission spectra of Sr2CeO4:5 mol%Eu3+, 3 mol% Dy3+ phosphors, the characteristic lines of Dy3+ have also been observed. This result indicates that there also exists an energy transfer process between Sr2CeO4 and Dy3+.  相似文献   

9.
This paper reports the photoluminescence and afterglow behavior of Eu2+ and Eu3+ in Sr3Al2O6 matrix co-doped with Dy3+. The samples containing Eu2+ and Eu3+ were prepared via solid-state reaction. X-ray diffraction (XRD), photo luminescent spectroscope (PLS) and thermal luminescent spectroscope (TLS) were employed to characterize the phosphors. The comparison between the emission spectra revealed that Sr3Al2O6 phosphors doped with Eu2+, Dy3+ and Eu3+, Dy3+ showed different photoluminescence. The phosphor doped with Eu3+, Dy3+ showed an intrinsic f-f transition generated from Eu3+, with two significant emissions at 591 and 610 nm. However, the phosphor doped with Eu2+, Dy3+ revealed a broad d-f emission centering around 512 nm. After the UV source was turned off, Eu2+, Dy3+ activated Sr3Al2O6 phosphor showed excellent afterglow while Eu3+, Dy3+ activated phosphor almost showed no afterglow. Thermal simulated luminescence study indicated that the persistent afterglow of Sr3Al2O6: Eu2+, Dy3+ phosphor was generated by suitable electron traps formed by the co-doped rare-earth ions (Dy3+) within the host.  相似文献   

10.
Nanopowders of SrAl2O4 pure and doped with rare earths were prepared via a proteic sol-gel methodology. The prepared materials presented a single crystalline phase, confirmed by XRD measurements. AFM results indicate that the average particle size is about 53 nm for SrAl2O4 powders. The radioluminescence spectrum of SrAl2O4: Eu2+, Dy3+ is composed by two intense peaks around 520 and 570 nm followed by a weaker emission peaking at 615 nm. It was observed that the intensity of RL emission during irradiation with X-rays decreased as a function of the irradiation time, indicating the build up of radiation damage in the nanopowders. The irradiated samples exhibited a persistent radiation damage that changes the colour of the sample, and also influenced the reduction in the scintillation efficiency. The saturation level of SrAl2O4: Eu2+ is 96%, exhibiting good resistance to radiation damage.  相似文献   

11.
CaAl2O4:Eu2+ co-doped with varying concentrations of Er3+ was prepared by solid-state reaction method. Prepared materials with 1 mol% Eu2+ and 2-10 mol% of Er3+ were investigated for their photoluminescence properties. Phase, morphology and crystalline structure were investigated by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Broad band UV-excited luminescence was observed for CaAl2O4:Eu2+, Er3+ in the blue region (λmax=440 nm) due to transitions from 4f65d1 to the 4f7 configuration of the Eu2+ ion. The Er3+ ion co-doping generates deep traps, which results in longer decay time for phosphorescence.  相似文献   

12.
BaAl2O4:Eu2+,Nd3+,Gd3+ phosphors were prepared by a combustion method at different initiating temperatures (400–1200 °C), using urea as a comburent. The powders were annealed at different temperatures in the range of 400–1100 °C for 3 h. X-ray diffraction data show that the crystallinity of the BaAl2O4 structure greatly improved with increasing annealing temperature. Blue-green photoluminescence, with persistent/long afterglow, was observed at 498 nm. This emission was attributed to the 4f65d1–4f7 transitions of Eu2+ ions. The phosphorescence decay curves were obtained by irradiating the samples with a 365 nm UV light. The glow curves of the as-prepared and the annealed samples were investigated in this study. The thermoluminescent (TL) glow peaks of the samples prepared at 600 °C and 1200 °C were both stable at ∼72 °C suggesting that the traps responsible for the bands were fixed at this position irrespective of annealing temperature. These bands are at a similar position, which suggests that the traps responsible for these bands are similar. The rate of decay of the sample annealed at 600 °C was faster than that of the sample prepared at 1200 °C.  相似文献   

13.
Phosphor material BaAl2O4:Eu2+, Dy3+ with varying compositions of Sr substitution were prepared by the solid-state synthesis method. The phosphor compositions were characterized for their phase and crystallinity by XRD, SEM and TEM. Photoluminescence (PL) properties were investigated measuring PL and decay time for varying Ba/Sr compositions. The PL results show the blue shift in the luminescence properties in Sr substituted BaAl2O4:Eu2+, Dy3+ compared to parent BaAl2O4:Eu2+, Dy3+. It is probably due to the influence of 5d electron states of Eu2+ in the crystal field because of atomic size variation causing crystal defects. Dy3+ ion doping in the phosphor generates deep traps, which results in long afterglow phosphorescence.  相似文献   

14.
SrAl2O4:Eu2+, Dy3+ thin films were grown on Si (1 0 0) substrates in different atmospheres using the pulsed laser deposition (PLD) technique. The effects of vacuum, oxygen (O2) and argon (Ar) deposition atmospheres on the structural, morphological and photoluminescence (PL) properties of the films were investigated. The films were ablated using a 248 nm KrF excimer laser. Improved PL intensities were obtained from the unannealed films prepared in Ar and O2 atmospheres compared to those prepared in vacuum. A stable green emission peak at 520 nm, attributed to 4f65d1→4f7 Eu2+ transitions was obtained. After annealing the films prepared in vacuum at 800 °C for 2 h, the intensity of the green emission (520 nm) of the thin film increased considerably. The amorphous thin film was crystalline after the annealing process. The diffusion of adventitious C into the nanostructured layers deposited in the Ar and O2 atmospheres was most probably responsible for the quenching of the PL intensity after annealing.  相似文献   

15.
Nanosized barium aluminate materials was doped by divalent cations (Ca2+, Sr2+) and Eu2+ having nominal compositions Ba1−xMxAl12O19:Eu (M=Ca and Sr) (x=0.1-0.5), were synthesized by the combustion method. These phosphors were characterized by XRD, scanning electron microscopy-energy-dispersive spectrometry (SEM-EDS) and photoluminescence measurement. The photoluminescence characterization showed the presence of Eu ion in divalent form which gave emission bands peaking at 444 nm for the 320 nm excitation (solid-state lighting excitation), while for 254 nm it gave the same emission wavelength of low intensity (1.5 times) compared to 320 nm excitation. It was also observed that alkaline earth metal (Ca2+ and Sr2+) dopants increase the intensity of Eu2+ ion in BaAl12O19 lattice, thus this phosphor may be useful for solid-state lighting.  相似文献   

16.
SrAl2O4:Eu2+, Dy3+ is a phosphor characterized by a long persistent luminescence (PLUM) when excited with UV-vis light and ionizing radiation exhibiting intensity variation in the 10-320 K temperature range and maximum intensity around 320 K. In this work, we study the PLUM behavior of SrAl2O4:Eu2+, Dy3+ as a function of temperature from room temperature to 670 K in samples exposed to β irradiation. The room-temperature irradiation followed by PLUM readout revealed an integrated PLUM maximum at 323 K decreasing later. In contrast, irradiation and PLUM readout at temperatures above room temperatures produced integrated PLUM intensities maxima around 425 and 625 K. Successive cycles of preheating followed by irradiation and PLUM readout produced an increasing of the PLUM intensity as a function of cycle number. The observed phenomenon was ascribed to trapped electrons at the multiple trapping states related to the 425 and 625 K defects levels and electron transfer from one trap to another (electron hopping). Eventually, there is a return to the 5d level of Eu3+ cations with the characteristic PLUM emission by thermal energy supplied at room temperature (lattice vibrations) or by a preheating-irradiation-readout cycle. This property may allow keeping up the PLUM properties of SrAl2O4:Eu2+, Dy3+ phosphors through background radiation self exposure and adequate heating processes.  相似文献   

17.
In this work, we made five samples of SrAl2O4: Eu2+, Dy3+, the α phase and β phase SrAl2O4:Eu2+,Dy3+ powder and pellet samples, and α phase single crystal. We have measured the emission spectra of all the samples. All the emission peaks are around 520 nm, which correspond to the transition from 4f65d1(2Eg) to 4f7(8S7/2) of Eu2+ in SrAl2O4 host. The intensity of emission of the β phase is stronger than that of the α phase. We believe that it is because the Eu2+ ions have occupied the two types of sites in the α phase SrAl2O4 host and the lifetime of the transition of Eu2+ in the A site is longer than that in the B site. This result also proves that the β phase of the material is brighter than the α phase. In addition, the β phase can be achieved by quenching technique.  相似文献   

18.
The emission properties of Eu2+ and Mn2+ in monoclinic SrAl2Si2O8 (M-SAS) and hexagonal BaAl2Si2O8 (H-BAS), both of which have only one alkaline-earth site, were studied. The emission peaks of both Eu2+ (405 nm) and Mn2+ (564 nm) in SrAl2Si2O8, are located at longer wavelengths, compared with those in H-BAS (373 nm for Eu2+ and 518 nm for Mn2+), because of the stronger crystal field strength at the Sr site. EPR spectra showed that the g values of Mn2+ are 4.5065 in M-SAS:Mn and 2.0247 in H-BAS:Mn. Magnetic measurements proved that Mn2+ was at high-spin state in both hosts. The large g value of Mn2+ in M-SAS was ascribed to the mixing of the first excitation state to the ground state, both of which have lower d orbital degeneracy due to the lower symmetry of Mn2+ site. The transfer efficiency from Eu2+ to Mn2+was about 10% in M-SAS, higher than that in H-BAS (5%). This was probably because Eu2+ emission overlaps the relatively low excitation level of Mn2+ in M-SAS. In order to obtain high transfer efficiency, it was necessary for the Eu2+ emission to overlap the lowest excitation level of Mn2+. The results obtained in this work may be helpful to design the new white or red phosphors for white-light emitting diode (w-LED) applications.  相似文献   

19.
(Ca1 − x, Srx)Al2Si2O8:0.06Ce3+, M+ (M+ = Li+, Na+, K+) phosphors have been prepared by conventional solid-state reaction method. The structural and optical properties of the phosphors were characterized by X-ray diffraction (XRD) technique and spectrophotometer, respectively. A regular variation was found among the XRD patterns of (Ca1 − x, Srx)Al2Si2O8:0.06Ce3+ phosphors based on the changing of Sr content. With the increase of Sr content, the maximum of emission band presented slight blue shifts (~ 15 nm). The luminescence intensity of CaAl2Si2O8:0.06Ce3+ and SrAl2Si2O8:0.06Ce3+ were significantly enhanced when K+ and Li+ were incorporated, respectively.  相似文献   

20.
Samples of SrAl2O4:Eu3+ doped with B3+ and SrAl2O4:Eu3+ co-doped with B3+ and Li+ have been prepared by the solid-reaction method. The influence of B3+ and Li+ contents on luminescence property has been investigated. It is found that the substitution of B3+ for Al3+ greatly improves red emission intensity at 591, 615 and 701 nm. The dopant Li+ as charge compensator in SrAl2O4:Eu3+, B3+ can further enhance luminescence intensity. The strongest red emission is obtained in the Sr(Al1.9, B0.1)O4:Eu0.023+, Li+0.02 sample. The developed phosphors can be efficiently excited by ultraviolet (UV) light from 350 to 480 nm, which indicates that B3+ and Li+ co-doped SrAl2O4:Eu3+ is a good candidate phosphor applied in solid-state lighting in conjunction with white UV light-emitting diodes (LEDs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号