首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A series of yellow-green (Sr, Ca)3B2O6:Eu phosphors have been synthesized using precursors prepared via a facile sol-gel route. The solid-solution phases crystallized to materials with the formula of Sr3−xyCaxEuyB2O6 with varied Ca2+ and Eu2+ contents. The emission peak centered at 540 nm under near-UV excitation exhibited a broad-band distribution in the range of 450-650 nm. The dependences of the luminescence intensity on the contents of Ca2+ substitution and Eu2+ dopant were also investigated. The composition in the host lattice sensitively affected the chromaticity index. Sr1.21Ca1.7Eu0.09B2O6 (SCB:0.09Eu) was shown to possess the highest intensity and broadest emission band. Calcining temperature was shown to greatly influence the luminescent properties of SCB:0.09Eu. It is concluded that SCB:0.09Eu can be used as an efficient yellow-green phosphor for white light-emitting diodes (white LEDs) applications.  相似文献   

2.
This study evaluated potential applications of green to yellow-emitting phosphors (Sr1−xSi2O2N2: Eu2+x) in blue pumped white light emitting diodes. Sr1-xSi2O2N2: Eu2+x was synthesized at different Eu2+ doping concentrations at 1450 °C for 5 h under a reducing nitrogen atmosphere containing 5% H2 using a conventional solid reaction method. The X-ray diffraction patterns of the prepared phosphor (Sr1-xSi2O2N2: Eu2+x) were indexed to the SrSi2O2N2 phase and an unknown intermediate phase. The photoluminescence properties of these phosphors (Sr1−xSi2O2N2: Eu2+x) showed that the samples were excited from the UV to visible region due to the strong crystal field splitting of the Eu2+ ion. The emission spectra under excitation of 450 nm showed a bright color at 545-561 nm. The emission intensity increased gradually with increasing Eu2+ doping concentration ratio from 0.05 to 0.15. However, the emission intensity decreased suddenly when the Eu2+ concentration ratio was >0.2. As the doping concentration of Eu2+ was increased, there was a red shift in the continuous emission peak. These results suggest that Sr1-xSi2O2N2: Eu2+x phosphor can be used in blue-pumped white light emitting diodes.  相似文献   

3.
Stabled hexagonal phase Sr1−xBaxAl2O4:Eu2+ (x=0.37-0.70) was prepared by solid-state method. Result revealed that the structure behavior of the SrAl2O4:Eu2+ calcined at 1350 °C in a reducing atmosphere for 5 h strongly depended on the Ba2+ concentration. With increasing Ba2+ concentration, a characteristic hexagonal phase can be observed. When 37-70% of the strontium is replaced by barium, the structure of the prepared sample is pure hexagonal. Photoluminescence and excitation spectra of the samples with different x and doped with 2% Eu2+ were investigated. Changes in the emission spectra were observed in the two different phases. The green emission at 505 nm from Eu2+ was found to be quite strong in the hexagonal phase. The intensity and peak position of the green luminescence from Eu2+ changed with increasing content of Ba2+. The strongest green emission was obtained from Sr0.61Ba0.37Al2O4:Eu2+. The decay characteristics of Sr1−xBaxAl2O4:Eu2+ (x=0.37-0.70) showed that the life times also varied with the value of x. Furthermore, the emission colors and decay times varying with x could be ascribed to the variation of crystal lattice.  相似文献   

4.
Ca0.54Sr0.34−1.5xEu0.08Smx(MoO4)y (WO4)1−y red phosphors were prepared by solid-state reaction using Na+ as a charge compensator for light-emitting diodes (LED). The effects of Na+ concentration, synthesis temperature, reaction time and Eu3+ concentration were studied for the properties of luminescence and crystal structure of red phosphors. The results show that the optimum reaction condition is 6%, 900 °C, 2 h and 8%. The photoluminescence spectra show that red phosphors are effectively excited at 616 nm by 292, 395 and 465 nm. The wavelengths of 465 nm nicely match the widely applied emission wavelengths of blue LED chips.  相似文献   

5.
Rare-earth-doped polycrystalline Ca3(PO4)2:Eu, Ca3(PO4)2:Dy and Ca3(PO4)2:Eu,Dy phosphors prepared by a modified solid-state synthesis has been studied for its X-ray diffraction, thermoluminescence (TL) and photoluminescence (PL) characteristics. The PL emission spectra of the phosphor suggest the presence of Eu3+ ion in Ca3(PO4)2:Eu and Dy3+ ion in Ca3(PO4)2:Dy lattice sites. The TL glow curve of the Ca3(PO4)2:Eu compounds has a simple structure with a prominent peak at 228 °C, while Ca3(PO4)2:Dy peaking at 146 and 230 °C. TL sensitivity of phosphors are compared with CaSO4: Dy and found 1.52 and 1.20 times less in Ca3(PO4)2:Eu and Ca3(PO4)2:Dy phosphors, respectively. The Ca3(PO4)2:Eu,Dy phosphors shows switching behavior under two different excitation wavelengths and enhancement in PL intensity of Dy3+ ions were reported. The paper discusses the photoluminescence and thermoluminescence behavior of Eu3+ and Dy3+ ion in Ca3(PO4)2 hosts, it may be applicable to solid-state lighting as well as thermoluminescence dosimetry applications.  相似文献   

6.
In order to prepare fluorescent material for UV-LED used as illumination light source, two series of Eu2+ doped (1 mol%) alkaline earth aluminate phosphors CaxSr1−xAl2O4 and BaxSr1−xAl2O4 were prepared. The crystal structure, relative quantum efficiency(Qr), peak wavelength(λp), color tuning and chromaticity were investigated by XRD patterns and photoluminescence (PL) on samples prepared by solid solution system (s series) and powder mixing system (m series) respectively. For the s series, the synthesized CaxSr1−xAl2O4:Eu2+ powders show that the structure transforms from monoclinic to hexagonal at x?0.5, and λp increases from 442.3 to 529.7 nm with decreasing x. For the BaxSr1−xAl2O4:Eu2+ system, the structure transforms from monoclinic to hexagonal at x?0.3, and λp decreases from 520.5 to 502.2 nm continuously from x=0 to 1. The shift in λp could be explained by the crystal field effect, which is affected by different coulomb attractive forces due to the various fraction of alkaline earth cation in the host lattice. Different phosphor properties prepared by either solid solution or powder mixing methods were characterized by chromaticity measurements for both reflective and transmissive modes.  相似文献   

7.
Polycrystalline Ca2BO3Cl:Ce3+,Eu2+ phosphors were synthesized by a solid-state reaction and which could display tunable color emission from blue to yellow under an ultraviolet (UV) source by adjusting the ratio of Ce3+ and Eu2+ appropriately. The mechanism of resonance-type energy transfer from Ce3+ to Eu2+ was established to be electric dipole-dipole natured, and the critical distance was estimated to be 31 Å based on the spectral overlap and concentration quenching model. A white light was obtained from Ca2BO3Cl:0.06Ce3+,0.01Eu2+ phosphor with chromaticity coordinates (x=0.31, y=0.29) and relative color temperature of 7330 K upon excitation with 360 nm, which is potentially a good candidate as an UV-convertible phosphor for white light-emitting diodes (LEDs).  相似文献   

8.
Single phase of Ca1−xMo1−ySiyO4:Eux3+ (0.18?x?0.26, 0?y?0.04) was synthesized by solid-state method. The photoluminescence investigation indicated that Ca1−xMoO4:Eux3+ (0.18?x?0.26) could be effectively excited by 393 and 464 nm, and it exhibited an intense red emission at 615 nm. The introduction of Si4+ ions did not change the position of the peaks but strongly enhanced the emission intensity of Eu3+ under 393 and 464 nm excitations and showed very good color purity. The emission intensity of optimal Ca0.8Mo0.98Si0.02O4:Eu0.23+ sample (excited by 393 nm) was about 5.5 times higher than that of the phosphor Y2O2S:0.05Eu3+. So this phosphor could be nicely suitable for the application of the UV LED chips.  相似文献   

9.
The photoluminescence (PL) emission and excitation behavior of red-emitting Eu0.1GdxLa1.9−xTeO6 (0.02?x?0.1) powder phosphors is reported. Three dominant bands centered at 395, 466 and 534 nm characterized the excitation spectrum. Under the excitation of 395 nm UV light, the emission spectrum exhibits an intense peak centered at 616 nm corresponding to the 5D07F2 transition of Eu3+. Because the f→f transitions are located in the wavelength range of blue or near-UV range, optimized phosphor, Eu0.10Gd0.08La1.82TeO6, is a promising material for solid-state lighting based on GaN LEDs applications.  相似文献   

10.
Sodium europium double tungstate [NaEu(WO4)2] phosphor was prepared by the solid-state reaction method. Its crystal structure, photoluminescence properties and thermal quenching characteristics were investigated aiming at the potential application in the field of white light-emitting diodes (LEDs). The influences of Sm doping on the photoluminescence properties of this phosphor were also studied. It is found that this phosphor can be effectively excited by 394 or 464 nm light, which nicely match the output wavelengths of near-ultraviolet (UV) or blue LED chips. Under 394 or 464 nm light excitation, this phosphor exhibits stronger emission intensity than the Y2O2S:Eu3+ or Eu2+-activated sulfide phosphor. The introduction of Sm3+ ions can broaden the excitation peaks at 394 and 464 nm of the NaEu(WO4)2 phosphor and significantly enhance its relative luminance under 400 and 460 nm LEDs excitation. Furthermore, the relative luminance of NaEu(WO4)2 phosphor shows a superior thermal stability compared with the commercially used sulfide or oxysulfide phosphor, and make it a promising red phosphor for solid-state lighting devices based on near-UV or blue LED chips.  相似文献   

11.
The phosphor, BaMgAl10O17:Eu2+, showing a blue emission band at about 450 nm was prepared by a normal solid-state reaction using BaCO3, Al2O3, MgO and Eu2O3 as starting materials with AlF3 as a flux. The study of combined Rietveld refinement and photoluminescence spectra was carried out to determine the structural parameters, such as lattice constants, the valence state of Eu, the site preference of Mg and site fractions of Mg and Eu. The occupancies of Eu and Mg were 0.022 and 0.526, respectively. The valence state of Eu was the divalent state because there was only one broad line at about 450 nm in the photoluminescence spectrum. The site preference of Mg atoms was the tetrahedral site of Al atoms surrounded by oxygen atoms in the spinel block. Lattice parameters decreased due to the difference of two ionic radii, Eu2+(1.09 Å) and Ba2+(1.34 Å), compared with those of BaMgAl10O17.  相似文献   

12.
We have prepared polycrystalline Ca3−xEuxCo4O9+δ (x=0, 0.15, 0.3 and 0.45) samples using a sol-gel process followed by SPS sintering and investigated the Eu substitution effects on their high-temperature thermoelectric properties. With the Eu substitution, both the electrical resistivity and thermopower increase monotonously. This could be attributed to the decrease of hole concentrations by substitution of trivalent Eu3+ for divalent Ca2+. The Eu substituted samples (x=0.15, x=0.3) have lower thermal conductivity than Ca3Co4O9+δ due to their lower electronic and lattice thermal conductivity. The dimensionless figure of merit ZT reaches 0.3 at 1000 K for the sample of Ca2.7Eu0.3Co4O9+δ.  相似文献   

13.
By introducing the Y3+ into Sr2P2O7:Eu2+, we successfully prepared a kind of new phosphor with blue long-lasting phosphorescence by the high-temperature solid-state reaction method. In this paper, the properties of Sr2P2O7:Eu2+,Y3+ were investigated utilizing XRD, photoluminescence, luminescence decay, long-lasting phosphorescence and thermoluminescence (TL) spectra. The phosphor emitted blue light that was related to the 4f65d1-8S7/2 transition of Eu2+. The bright blue phosphorescence could be observed by naked eyes even 8 h after the excitation source was removed. Two TL peaks at 317 and 378 K related to two types of defects appeared in the TL spectrum. By analyzing the TL curve the depths of traps were calculated to be 0.61 and 0.66 eV. Also, the mechanism of LLP was discussed in this report.  相似文献   

14.
Room temperature photoluminescence quantum efficiency of the alloy of Ca1−xEuxGa2S4 was measured as a function of x, and was found to be nearly unity under excitation at peak wavelength of excitation spectrum (510 nm) in the x range of 0.01≤x≤0.2. At larger x values, it tends to decrease, but still as high as 30% for stoichiometric compound EuGa2S4. Taking these backgrounds into account, pump-probe experiments were done with Ca1−xEuxGa2S4 for searching optical gain at x=0.2. The optical gain of nearly 30 cm−1 was confirmed to exist, though the pumping induced transient absorption which seems to limit the higher gain was found.  相似文献   

15.
Green phosphor compositions MgxSr1−xAl2O4:Eu, Nd (with x=0.05-0.25) were prepared by solid state reaction method. The effect of Mg substitution on photoluminescence characteristics was investigated. The photoluminescence show intense green emission for MgSrAl2O4:Eu2+, Nd3+ with long persistence. This green emission corresponds to transitions from 4f65d1 to 4f7 of Eu2+ ion. Comparative analysis of the excitation and emission spectra were used to evaluate the crystal field splitting of the 5d states of Eu2+ and the parameters of electron-vibrational interaction, such as Huang-Rhys factor, effective phonon energy, and zero-phonon line position.  相似文献   

16.
The red phosphors NaY1−xEux(WO4)2 with different concentrations of Eu3+ were synthesized via the combustion synthesis method. As a comparison, NaEu(WO4)2 was prepared by the solid-state reaction method. The phase composition and optical properties of as-synthesized samples were studied by X-ray powder diffraction and photoluminescence spectra. The results show that the red light emission intensity of the combustion synthesized samples under 394 nm excitation increases with increase in Eu3+ concentrations and calcination temperatures. Without Y ions doping, the emission spectra intensity of the NaEu(WO4)2 phosphor prepared by the combustion method fired at 900 °C is higher than that prepared by the solid-state reaction at 1100 °C. NaEu(WO4)2 phosphor synthesized by the combustion method at 1100 °C exhibits the strongest red emission under 394 nm excitation and appropriate CIE chromaticity coordinates (x=0.64, y=0.33) close to the NTSC standard value. Thus, its excellent luminescence properties make it a promising phosphor for near UV InGaN chip-based red-emitting LED application.  相似文献   

17.
The Eu2+-doped Ba3Si6O12N2 green phosphor (EuxBa3−xSi6O12N2) was synthesized by a conventional solid state reaction method. It could be efficiently excited by UV-blue light (250-470 nm) and shows a single intense broadband emission (480-580 nm). The phosphor has a concentration quenching effect at x=0.20 and a systematic red-shift in emission wavelength with increasing Eu2+ concentration. High quantum efficiency and suitable excitation range make it match well with the emission of near-UV LEDs or blue LEDs. First-principles calculations indicate that Ba3Si6O12N2:Eu2+ phosphor exhibits a direct band gap, and low band energy dispersion, leading to a high luminescence intensity. The origin of the experimental absorption peaks is clearly identified based on the analysis of the density of states (DOS) and absorption spectra. The photoluminescence properties are related to the transition between 4f levels of Eu and 5d levels of both Eu and Ba atoms. The 5d energy level of Ba plays an important role in the photoluminescence of Ba3Si6O12N2:Eu2+ phosphor. The high quantum efficiency and long-wavelength excitation are mainly attributed to the existence of Ba atoms. Our results give a new explanation of photoluminescence properties and could direct future designation of novel phosphors for white light LED.  相似文献   

18.
Sr3MgSi2O8:Eu2+ and Sr2MgSi2O7:Eu2+ phosphors find uses in applications such as plasma display panel (PDP), solid-state lighting, longafter glow. Preparation of these phosphors by a modified combustion synthesis is described in this paper. As-prepared samples did not show photoluminescence. After reducing the samples at 900 °C, characteristic Eu2+ emission was observed. Preparation of these phosphors by using similar methods helped clarifying various results obtained for Sr3MgSi2O8:Eu2+ by different investigators.  相似文献   

19.
The crystalline structure and photoluminescence (PL) properties of europium-doped cerium dioxide synthesized by the solid-state reaction method were analyzed. CeO2:Eu3+ phosphor powders exhibit the pure cubic fluorite phase up to 10 mol% doping concentration of Eu3+. With indirect excitation of CeO2 host at 373 nm, the PL intensity quickly increases with increasing Eu3+ concentration, up to about 1 mol%, and then decreases indicating the concentration quenching. While with direct excitation (467 nm), much more stronger PL emissions, especially the electric dipole emission 5D0-7F2 at 612 nm, are observed and no concentration quenching occurs up to 10 mol% doping concentration of Eu3+. The nature of this behavior and the cause of the concentration quenching were discussed.  相似文献   

20.
Changyu Shen  Yi Yang  Huajun Feng 《Optik》2010,121(1):29-32
The shift of the emission band to longer wavelength (yellow-orange) of the Ba2MgSi2−xAlxO7: 0.1Eu2+ phosphor under the 350-450 nm excitation range has been achieved by adding the codoping element (Mn2+) in the host. The single-host silicate phosphor for WLED, Ba2MgSi2−xAlxO7: 0.1Eu2+, 0.1Mn2+ was prepared by high-temperature solid-state reaction. It was found experimentally that, its three-color emission peaks are situated at 623, 501 and 438 nm, respectively, under excitation of 350-450 nm irradiation. The emission peaks at 438 and 501 nm originate from the transition 5d to 4f of Eu2+ ions that occupy the two Ba2+ sites in the crystal of Ba2MgSi2−x AlxO7, while the 623 nm emission is attributed to the energy transfer from Eu2+ ions to Mn2+ ions. The white light can be obtained by mixing the three emission colors of blue (438 nm), green (501 nm) and red (623 nm) in the single host. When the concentrations of the Al3+, Eu2+ and Mn2+ ions were 0.4, 0.1 and 0.1 mol, respectively, the sample presented intense white emission. The addition of Al ion to the host leads to a substantial change of intensity ratio between blue and green emissions. White light could be obtained by combining this phosphor with 405 nm light-emitting diodes. The near-ultraviolet GaN-based Ba2MgSi1.7 Al0.3O7: 0.1Eu2+, 0.1Mn2+ LED achieves good color rendering of over 85.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号