首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
吴绍全  陈佳峰  赵国平 《物理学报》2012,61(8):87203-087203
从理论上研究了串型耦合双量子点之间库仑作用对其近藤共振的影响. 采用非平衡态格林函数和奴役玻色子平均场近似方法求解了系统的哈密顿量; 计算了系统电子的态密度、透射率、占居数和近藤温度随双量子点之间库仑作用能的变化, 同时也计算了电极处于极化时双量子点之间库仑作用能对系统电子态密度的影响. 结果表明,双量子点之间库仑作用能够极大地影响系统的基态物理性质. 同时还对相关的物理问题进行了讨论.  相似文献   

2.
We theoretically investigate the effect of the interdot Coulomb repulsion on Kondo resonances in the series-coupled double quantum dot coupled to two ferromagnetic leads. The Hamiltonian of our system is solved by means of the slave-boson mean-field approximation, and the variation of the density of states, the transmission probability, the occupation number, and the Kondo temperature with the interdot Coulomb repulsion are discussed in the Kondo regime. The density of states is calculated for various interdot Coulomb repulsions with both parallel and antiparallel lead-polarization alignments. Our results reveal that the interdot Coulomb repulsion greatly influences the physical property of this system, and relevant underlying physics of this system is discussed.  相似文献   

3.
A system consisting of two independently contacted quantum dots with a strong electrostatic interaction shows an interdot Coulomb blockade when the dots are weakly tunnel coupled to their leads. How the blockade can be overcome by correlated tunneling when tunnel coupling to the leads increases is studied experimentally. The experimental results are compared with numerical renormalization group calculations using predefined (measured) parameters. Combining our experimental and theoretical results we identify transport through Kondo correlations due to the electrostatic interaction between the two dots.  相似文献   

4.
Numerical results for transport properties of two coupled double-level quantum dots (QDs) strongly suggest that under appropriate conditions the dots develop a novel ferromagnetic (FM) correlation at quarter filling (one electron per dot). In the strong coupling regime (Coulomb repulsion larger than electron hopping) and with interdot tunneling larger than tunneling to the leads, an S=1 Kondo resonance develops in the density of states, leading to a peak in the conductance. A qualitative "phase diagram," incorporating the new FM phase, is presented. In addition, the necessary conditions for the FM regime are less restrictive than naively believed, leading to its possible experimental observation in real QDs.  相似文献   

5.
We study the capacitance spectra of artificial molecules consisting of two and three coupled quantum dots from an extended Hubbard Hamiltonian model that takes into account quantum confinement, intra- and inter-dot Coulomb interaction and tunneling coupling between all single particle states in nearest neighbor dots. We find that, for weak coupling, the interdot Coulomb interaction dominates the formation of a collective molecular state. We also calculate the effects of correlations on the tunneling probability through the evaluation of the spectral weights, and corroborate the importance of selection rules for understanding experimental conductance spectra.  相似文献   

6.
We report measurements of the cross correlation between temporal current fluctuations in two capacitively coupled quantum dots in the Coulomb blockade regime. The sign of the cross-spectral density is found to be tunable by gate voltage and source-drain bias. We find good agreement with the data by including an interdot Coulomb interaction in a sequential-tunneling model.  相似文献   

7.
丁国辉  叶飞 《中国物理快报》2007,24(10):2926-2929
We investigate electronic transport through a parallel double quantum dot (DQD) system with strong on-site Coulomb interaction, as well as the interdot tunnelling. By applying numerical renormalization group method, the ground state of the system and the transmission probability at zero temperature are obtained. For a system of quantum dots with degenerate energy levels and small interdot tunnel coupling, the spin correlations between the DQDs is ferromagnetic, and the ground state of the system is a spin-1 triplet state. The linear conductance will reach the unitary limit (2e^2/h) due to the Kondo effect at low temperature. As the interdot tunnel coupling increases, there is a quantum phase transition from ferromagnetic to anti-ferromagnetic spin correlation in DQDs and the linear conductance is strongly suppressed.  相似文献   

8.
The Kondo effect and the Andreev reflection tunneling through a normal (ferromagnet)-double quantum dots-superconductor hybrid system is examined in the low temperature by using the nonequilibrium Green's function technique in combination with the slave-boson mean-field theory. The interplay of the Kondo physics and the Andreev bound state physics can be controlled by varying the interdot hopping strength. The Andreev differential conductance is mainly determined by the competition between Kondo states and Andreev states. The spin-polarization of the ferromagnetic electrode increases the zero-bias Kondo peak. The spin-flip scattering influences the Kondo effect and the Andreev reflection in a nontrivial way. For the ferromagnetic electrode with sufficiently large spin polarization, the negative Andreev differential conductance is found when the spin flip strength in the double quantum dots is sufficiently strong.  相似文献   

9.
We theoretically study thermoelectric properties of a coupled double quantum dot (DQD) system coupled to normal leads using two impurity Anderson model with intra- as well as interdot Coulomb interactions. A generic formulation, which was earlier developed to study electronic properties (zero bias maximum of differential conductance and interesting partial swapping in Fano phenomena) of DQD system within Coulomb blockade regime for a non-magnetic case, is extended to investigate thermoelectric properties i.e. electrical conductance, thermoelectric power and thermal conductance of the same system, as a function of temperature by varying interdot Coulomb interaction and interdot tunneling. Interdot Coulomb interaction is found to trigger some novel features like crossover in thermoelectric power with temperature in all the configurations (series, parallel and T-shape) and a small peak in thermal conductance toward low temperatures, TΓ/10, in series and T-shape configurations, which is found to be missing in case of symmetric parallel configuration. The origin of these novel features is attributed to the interplay of renormalization of energy levels caused by the interdot Coulomb interaction which is interpreted in terms of local density of states and the asymmetry effects related to dot-lead couplings/interference effects.  相似文献   

10.
Conductance and other physical quantities are calculated in double quantum dots (DQD) connected in series in the limit of coherent tunnelling using a Green's function technique. The inter-dot Coulomb repulsion and the exchange interaction are studied by means of the Kotliar and Ruckenstein slave-boson mean-field approach. The crossover from the atomic to the molecular limit is analyzed in order to show how the conductance in the model depends on the competition between the level broadening (dot-lead coupling) and the dot-dot transmission. The double Kondo effect was found in the gate voltage characteristics of the conductance in the atomic limit. In the case, when each dot accommodates one electron, the Kondo resonant states are formed between dots and their adjacent leads and transport is dominated by hopping between these two resonances. In the molecular limit the conductance vanishes for sufficiently low gate voltages, which means the Kondo effect disappeared. For small dot-lead coupling the transport characteristics are very sensitive on the influence of the inter-dot Coulomb repulsion and the position of the local energy level. The resonance region is widened with increase of the inter-dot Coulomb interactions while the exchange interaction has opposite influence.  相似文献   

11.
We analyze the interactions between two Kondo quantum dots connected to a Rashba-active quantum wire. We find that the Kondo-doublet interaction, at an interdot distance of the order of the wire Fermi length, is over an order of magnitude greater than the RKKY interaction. The effects induced on the Kondo-doublet interaction by the wire spin-orbit coupling can be used to control the quantum dots spin-spin correlation. These results imply that the widely used assumption that the RKKY is the dominant interaction between Anderson impurities must be revised.  相似文献   

12.
When a quantum dot in the Kondo regime couples to two leads (the conduction electron reservoirs) indirectly through intermediate electron levels, two features are noteworthy concerning the Kondo effect. First, the Kondo peak in the spectrum of local density of states becomes narrower as the coupling to the leads is much larger than the interdot coupling, which is just opposite to the case of direct dot-lead coupling. Secondly, the increment of the coupling to the leads and the deviation of the intermediate levels from the Fermi level can effectively facilitate the formation of the negative differential conductance.  相似文献   

13.
Using an equation-of-motion technique, we theoretically study the Fano--Kondo effect in the T-shaped double quantum dots coupled to two ferromagnetic leads by the Anderson Hamiltonian. We calculate the density of states in this system with both parallel and antiparallel lead-polarization alignments, and our results reveal that the interdot coupling, the spin-polarized strength and the energy level of the side coupled quantum dot greatly influence the density of states of the central quantum dot. This system is a possible candidate for spin valve transistors and may have potential applications in the spintronics.  相似文献   

14.
We report low-temperature conductance measurements in the Coulomb blockade regime on two nominally identical tunnel-coupled quantum dots in parallel defined electrostatically in the two-dimensional electron gas of a GaAs/AlGaAs heterostructure. At low interdot tunnel coupling we find that the conductance measured through one dot is sensitive to the charge state of the neighboring dot. At larger interdot coupling the conductance data reflect the role of quantum charge fluctuations between the dots. As the interdot conductance approaches 2e2/h, the coupled dots behave as a single large dot.  相似文献   

15.
吴绍全  方栋开  赵国平 《物理学报》2015,64(10):107201-107201
从理论上研究了平行双量子点系统中的电子关联效应对该系统磁输运性质的影响. 基于广义主方程方法, 计算了通过此系统的电流、微分电导和隧穿磁阻. 计算结果表明: 电子自旋关联效应可以促发一个很大的隧穿磁阻, 而电子库仑关联效应不仅可以压制电子自旋关联效应, 还可以导致负隧穿磁阻和负微分电导的出现. 对相关的基本物理问题进行了讨论.  相似文献   

16.
A system of two quantum dots attached to external electrodes is considered theoretically in the orbital Kondo regime. In general, the double dot system is coupled via both Coulomb interaction and direct hopping. Moreover, the indirect hopping processes between the dots (through the leads) are also taken into account. To investigate the system's electronic properties we apply the slave-boson mean field (SBMF) technique. With the help of the SBMF approach the local density of states for both dots and the transmission (as well as linear and differential conductance) is calculated. We show that Dicke- and Fano-like line shapes may emerge in the transport characteristics of the double dot system. Moreover, we observed that these modified Kondo resonances are very susceptible to the change of the indirect coupling's strength. We have also shown that the Kondo temperature becomes suppressed with increasing asymmetry in the dot-lead couplings when there is no indirect coupling. Moreover, when the indirect coupling is turned on the Kondo temperature becomes suppressed. By allowing a relative sign of the nondiagonal elements of the coupling matrix with left and right electrodes, we extend our investigations to become more generic. Finally, we have also included the level renormalization effects due to indirect tunneling, which are mostly neglected.  相似文献   

17.
We developed a set of equations to calculate the electronic Green's functions in a T-shaped multi-quantum dot system using the equation of motion method. We model the system using a generalized Anderson Hamiltonian which accounts for finite intradot on-site Coulomb interaction in all component dots as well as for the interdot electron tunneling between adjacent quantum dots. Our results are obtained within and beyond the Hartree–Fock approximation and provide a path to evaluate all the electronic correlations in the multi-quantum dot system in the Coulomb blockade regime. Both approximations provide information on the physical effects related to the finite intradot on-site Coulomb interaction. As a particular example for our generalized results, we considered the simplest T-shaped system consisting of two dots and proved that our approximation introduces important corrections in the detector and side dots Green's functions, and implicitly in the evaluation of the system's transport properties. The multi-quantum dot T-shaped setup may be of interest for the practical realization of qubit states in quantum dot systems.  相似文献   

18.
We theoretically investigate the properties of the ground state of the strongly correlated T-shaped double quantum dots embedded in an Aharonov-Bohm ring in the Kondo regime by means of the one-impurity Anderson Hamiltonian. It is found that in this system, the persistent current depends sensitively on the parity and size of the ring. With the increase of interdot coupling, the persistent current is suppressed due to the enhancing Fano interference weakening the Kondo effect. Moreover, when the spin of quantum dot embedded in the Aharonov- Bohm ring is screened, the persistent current peak is not affected by interdot coupling. Thus this model may be a new candidate for detecting Kondo screening cloud.  相似文献   

19.
We study electron tunnelling through two small ferromagnetic dots. Quantum charge fluctuations and interdot coupling cause each Coulomb peak of conductance at zero interdot coupling to split. The interdot tunnel coupling depends on the relative orientation of magnetizations of the two dots, leading to different splitting energies of the Coulomb peaks in parallel and antiparallel magnetization alignments. As a result, a very large tunnelling magnetoresistance occurs near the Coulomb peaks, and its sign may be either positive or negative.  相似文献   

20.
Strong electron and spin correlations in a double quantum dot (DQD) can give rise to different quantum states. We observe a continuous transition from a Kondo state exhibiting a single-peak Kondo resonance to another exhibiting a double peak by increasing the interdot coupling (t) in a parallel-coupled DQD. The transition into the double-peak state provides evidence for spin entanglement between the excess electrons on each dot. Toward the transition, the peak splitting merges and becomes substantially smaller than t because of strong Coulomb effects. Our device tunability bodes well for future quantum computation applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号