首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Smog chamber/FTIR techniques were used to study the atmospheric chemistry of 3-pentanol and determine rate constants of k(Cl+3-pentanol) = (2.03 +/- 0.23) x 10 (-10) and k(OH+3-pentanol) = (1.32 +/- 0.15) x 10 (-11) cm (3) molecule (-1) s (-1) in 700 Torr of N 2/O 2 diluent at 296 +/- 2 K. The primary products of the Cl atom initiated oxidation of 3-pentanol in the absence of NO were (with molar yields) 3-pentanone (26 +/- 2%), propionaldehyde (12 +/- 2%), acetaldehyde (13 +/- 2%) and formaldehyde (2 +/- 1%). The primary products of the Cl atom initiated oxidation of 3-pentanol in the presence of NO were (with molar yields) 3-pentanone (51 +/- 4%), propionaldehyde (39 +/- 2%), acetaldehyde (44 +/- 4%) and formaldehyde (4 +/- 1%). The primary products of the OH radical initiated oxidation of 3-pentanol in the presence of NO were (with molar yields) 3-pentanone (58 +/- 3%), propionaldehyde (28 +/- 2%), and acetaldehyde (37 +/- 2%). In all cases the product yields were independent of oxygen concentration over the partial pressure range 10-700 Torr. The reactions of Cl atoms and OH radicals with 3-pentanol proceed 26 +/- 2 and 58 +/- 3%, respectively, via attack on the 3-position to give an alpha-hydroxyalkyl radical, which reacts with O 2 to give 3-pentanone. The results are discussed with respect to the literature data and atmospheric chemistry of 3-pentanol.  相似文献   

2.
Conjugate addition of homochiral lithium N-benzyl-N-alpha-methylbenzylamide to tert-butyl (E)-cinnamate or tert-butyl (E)-crotonate and in situ amination with trisyl azide results in the exclusive formation of the corresponding 2-diazo-3-amino esters in > 95% de. Amination of the lithium (E)-enolates of tert-butyl (3S,alphaR)-3-N-benzyl-N-alpha-methylbenzylamino-3-phenylpropanoate or tert-butyl (3S,alphaS)-3-N-benzyl-N-alpha-methylbenzylaminobutanoate with trisyl azide gives the (2R,3R,alphaR)- and (2S,3S,alphaS )-anti-2-azido-3-amino esters in good yields and in 85% de and > 95% de respectively. Alternatively, tert-butyl anti-(2S,3S,alphaS)-2-hydroxy-3-N-benzyl-N-alpha-methylbenzylaminobutanoate may be converted selectively to tert-butyl anti-(2S,3S,alphaS)-2-azido-3-N-benzyl-N-alpha-methylbenzylaminobutanoate by aziridinium ion formation and regioselective opening with azide. Deprotection of tert-butyl (2S,3S,alphaS)-2-azido-3-aminobutanoate via Staudinger reduction, hydrogenolysis and ester hydrolysis furnishes anti-(2S,3S)-diaminobutanoic acid in 98%, de and 98% ee. The asymmetric synthesis of the diastereomeric syn-(2R,3S)-diaminobutanoic acid (98% de and 98% ee) was accomplished via functional group manipulation of tert-butyl anti-(2S,3S,alphaS)-2-hydroxy-3-N-benzyl-N-alpha-methylbenzylaminobutanoate in a protocol involving azide inversion of tert-butyl (2S,3S)-2-mesyloxy-3-N-Boc-butanoate and subsequent deprotection.  相似文献   

3.
The three-component aminoallylation reaction of the activated olefins 2 with the phthalimide 1a and allyl chloride proceeded very smoothly in the presence of Pd(2)dba(3).CHCl(3) (5 mol %)/P(4-FC(6)H(4))(3) (40 mol %) and Cs(2)CO(3) (3 equiv against 2) in dichloromethane at room temperature to give the corresponding aminoallylated products, N-pent-4-enylphthalimides 3, in 58-99% yields. The reaction of oxazolidinone 1b also proceeded very smoothly to give N-(2,2-dicyano-1-phenylpent-4-enyl)oxazolidinone in a quantitative yield; however, the Tsuji-Trost-type allylation products 4 were obtained in the case of dibenzylamine, N-tosylaniline, and pyrrolidin-2-one. Further, 2 underwent cycloaddition with N-tosylvinylaziridine 9a in the presence of Pd(2)dba(3).CHCl(3) (5 mol %)/P(4-FC(6)H(4))(3) (40 mol %) in THF at room temperature, giving the corresponding pyrrolidines 11 in 69-99% yields.  相似文献   

4.
The synthesis and characterization of new acid–base polymer blend membranes for the use in polymer electrolyte membrane fuel cell is presented in this paper. A novel polymeric base is synthesized from 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2-bis [4-(4-aminophenoxy)phenyl] hexafluoropropane and diaminoacrydine hemisulfate where the diaminoacrydine hemisulfate contribute the tertiary nitrogen groups to the polyimide backbone. This base polyimide is blended with a polyimide having sulfonic acid group in the main chain. The sulfonated polyimide is synthesized from 1,4,5,8-naphthalene-tetracarboxylic dianhydride (NTDA), 4,4′-diaminobiphenyl 2,2′-disulfonic acid (BDSA), 2-bis [4-(4-aminophenoxy)phenyl] hexafluoropropane (HFBAPP). Various polyimide blends having different molar ratio of sulfonic acid group and acrydine group are synthesized and they are characterized for thermal stability, ion exchange capacity, water uptake, hydrolytic stability and proton conductivity. All the sulfonated polyimides have good thermal stability and exhibited three-step degradation pattern. With the increase in polymeric base content, IEC decreased as AB-0% (2.0640) > AB-10% (2.0058) > AB-20% (1.8792) > AB-30% (1.5686) > AB-40% (1.2670) > AB-50% (1.1690) > AB-75% (0.9098) and water uptake decreased as AB-0% (34.06%) > AB-10% (32.82%) > AB-20% (24.01%) > AB-30% (20.31%) > AB-40% (12.86%) > AB-50% (9.25%) > AB-75% (8.37%). Proton conductivity of the acid–base polyimide blends at 90 °C are AB-0% (0.197) > AB-10% (0.124) > AB-20% (0.122) > AB-30% (0.088) > AB-40% (0.080) > AB-50% (0.034) > AB-75% (0.025). Polyimide blends showed higher hydrolytic stability than the pure acid polyimide. Between the polyimide blends the hydrolytic stability increased with increase in the base polymer content which is attributed to the increase in ionic crosslink density which reduces the polymer swelling and hence the mechanical stability of the membrane increases.  相似文献   

5.
Undoped Bi(2)O(3) and single and double doped Bi(2)O(3)?:?M (where M = Tb(3+) and Eu(3+)) nanophosphors were synthesized through a simple sonochemical process and characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), EDS, diffuse reflectance (DRS) and photoluminescence (PL) spectrophotometry. The TEM micrographs show that resultant nanoparticles have a rod-like shape. Energy transfer was observed from host to the dopant ions. Characteristic green emissions from Tb(3+) ions and red emissions from Eu(3+) ions were observed. Interestingly, the Commission International de l'Eclairage (CIE) coordinates of the double doped Bi(2)O(3)?:?Eu(3+)(0.8%)?:?Tb(3+)(1.2%) nanorods lie in the white light region of the chromaticity diagram and it has a quantum efficiency of 51%. The undoped Bi(2)O(3) showed a band gap of 3.98 eV which is red shifted to 3.81eV in the case of double doped Bi(2)O(3)?:?Eu(3+)(0.8%)?:?Tb(3+)(1.2%) nanorods. The photocatalytic activities of undoped nano Bi(2)O(3) and double doped nano Bi(2)O(3)?:?Eu(3+)(0.8%)?:?Tb(3+)(1.2%) were evaluated for the degradation of Rhodamine B under UV irradiation of 310 nm. The results showed that Bi(2)O(3)?:?Eu(3+)(0.8%)?:?Tb(3+)(1.2%) had better photocatalytic activity compared to undoped nano Bi(2)O(3). The evolution of CO(2) was realized and these results indicated the continuous mineralization of rhodamine B during the photocatalytic process. Thus double doped Bi(2)O(3)?:?Eu(3+)(0.8%)?:?Tb(3+)(1.2%) nanorods can be termed as a bifunctional material exhibiting both photocatalytic properties and white light emission.  相似文献   

6.
In the presence of NaH, the reaction between N2 and Mo(N[t-Bu]Ar)3 (Ar = 3,5-C6H3Me2) proceeds at room temperature to afford NMo(N[t-Bu]Ar)3 (95%). Lewis acidic silyl triflates (Me3SiOTf + pyridine or (i-Pr)3SiOTf) mediate a reaction between acid chlorides and NMo(N[t-Bu]Ar)3 to yield acyl imidos [RC(O)NMo(N[t-Bu]Ar)3][OTf] (R = Me, 92%; Ph, 75%; t-Bu, 64%). The reduction of [RC(O)NMo(N[t-Bu]Ar)3][OTf] by magnesium anthracene followed by treatment with Me3SiOTf affords molybdenum ketimides, R(Me3SiO)CNMo(N[t-Bu]Ar)3 (R = Me, 82%; Ph, 77%; t-Bu, 46%). Exposing R(Me3SiO)CNMo(N[t-Bu]Ar)3 to SnCl2 or ZnCl2 produces ClMo(N[t-Bu]Ar)3 (71-93% for SnCl2) and RCN (97-99%). Magnesium metal reduces ClMo(N[t-Bu]Ar)3 to Mo(N[t-Bu]Ar)3 (74%), completing a synthetic cycle. New strategies for the functionalization of sterically hindered nitrides and nitrile extrusion from d2 ketimides are presented in the context of a new route for derivatizing N2.  相似文献   

7.
Volatile compounds from seven Salvia species and one interspecific hybrid growing at the Dallas Arboretum and Botanical Garden, Texas, US. Salvia coccinea, S. farinacea, S. greggii, S. leucantha, S. longispicata x farinacea, S. madrensis, S. roemeriana and S. splendens were investigated for their chemical compositions using a microdistillation technique. Volatiles were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). One hundred and twenty seven compounds were identified representing 94.3-99.7% of the oils. The major components in each of the seven species were as follows: S. coccinea (Z)-3-hexenal (31%), viridiflorol (19%); S. farinacea 1-octen-3-ol (30%) and (Z)-3-hexenal (23%); S. greggii 1,8-cineole (22%), borneol (17%), camphene (11%) and alpha-pinene (10%); S. leucantha limonene (35%) and alpha-pinene (17%); S. longispicata x farinacea 1-octen-3-ol (50%) and (Z)-3-hexenal (24%); S. madrensis (Z)-3-hexenal (53%); S. roemeriana limonene (49%) and alpha-pinene (20%); and S. splendens (Z)-3-hexenal (36%), 2,5-dimethoxy-p-cymene (19%) and linalool (11%). The microdistillation method was fast, practical and a useful technique that enabled the isolation of the volatiles in samples when only limited quantities were available.  相似文献   

8.
This paper presents the possibilities of separation of yttrium(III)-neodymium(III) and samarium(III)-neodymium(III) pairs by frontal analysis on strongly basic anion-exchangers Wofatit SBW, Wofatit SBK and Lewatit MP 5080 in the systems: 90% (v/v) 2-propanol-10% (v/v) 7 M HNO3 and 90% (v/v) 1-propanol-10% (v/v) 7 M HNO3. The best results are obtained on Lewatit MP 5080 in the 90% (v/v) 2-propanol-10% (v/v) 7 M HNO3 system. In this system, on 1 dm3 of this anion-exchanger, 1.95 kg yttrium(III) and 0.3 kg samarium(III) were purified decreasing the microcomponent content to below 10(-3)%.  相似文献   

9.
[reaction: see text] Treatment of 1,2-bis(ethynyl)benzene (1) with aqueous HX (X = Br, I) in hot 3-pentanone (100-105 degrees C, 2 h) afforded 1,2-bis(1'-haloethenyl)benzene species 2-Br and 2-I in 98% and 95% yields, respectively. The hydrochlorination of endiyne 1 failed to proceed at elevated temperature but was implemented efficiently by PtCl2 (5 mol %) in hot 3-pentanone (100 degrees C, 2 h) to give 1,2-bis(1'-chloroethenyl)benzene 2-Cl in 80% yield. In the presence of PtCl2 (5 mol %), these halides 2-Cl,2-Br, and 2-I were subsequently converted to 1-halonaphthalenes 3-Cl, 3-Br, and 3-I in the mother solution via sequential 6-pi electrocyclization and dehalogenation reactions. PtCl2 (5 mol %) also effected direct haloaromatization of endiyne 1 with HX (X = Cl, Br, I) and gave 1-halonaphthalenes 3-Cl, 3-Br, and 3-I in 64-71% yields. This investigation reports the scope and the regioselectivity of haloaromatization of various enediynes catalyzed by PtCl2.  相似文献   

10.
[RuCl2(CO)3]2/Et3N and (eta 3-C3H5)RuBr(CO)3/Et3N are highly effective catalyst systems for carbonylative cyclization of allylic carbonates with alkenes to give the corresponding cyclopentenones in high yields. For example, treatment of allyl methyl carbonate (1a) with 2-norbornene (2a) in the presence of a catalytic amount of [RuCl2(CO)3]2 (2.5 mol %) and Et3N (10 mol %) at 120 degrees C for 5 h under 3 atm of carbon monoxide gave the corresponding cyclopentenone, exo-4-methyltricyclo[5.2.1.0(2,6)]dec-4-en-3-one (3a), in 80% yield with high stereoselectivity (exo 100%).  相似文献   

11.
Conjugate addition of lithium dibenzylamide to tert-butyl (+/-)-3-methylcyclopentene-1-carboxylate occurs with high levels of stereocontrol, with preferential addition of lithium dibenzylamide to the face of the cyclic alpha,beta-unsaturated acceptor anti- to the 3-methyl substituent. High levels of enantiorecognition are observed between tert-butyl (+/-)-3-methylcyclopentene-1-carboxylate and an excess of lithium (+/-)-N-benzyl-N-alpha-methylbenzylamide (10 eq.) (E > 140) in their mutual kinetic resolution, while the kinetic resolution of tert-butyl (+/-)-3-methylcyclopentene-1-carboxylate with lithium (S)-N-benzyl-N-alpha-methylbenzylamide proceeds to give, at 51% conversion, tert-butyl (1R,2S,3R,alphaS)-3-methyl-2-N-benzyl-N-alpha-methylbenzylaminocyclopentane-1-carboxylate consistent with E > 130, and in 39% yield and 99 +/- 0.5% de after purification. Subsequent deprotection by hydrogenolysis and ester hydrolysis gives (1R,2S,3R)-3-methylcispentacin in > 98% de and 98 +/- 1% ee. Selective epimerisation of tert-butyl (1R,2S,3R,alphaS)-3-methyl-2-N-benzyl-N-alpha-methylbenzylaminocyclopentane-1-carboxylate by treatment with KO'Bu in 'BuOH gives tert-butyl (1S,2S,3R,alphaS)-3-methyl-2-N-benzyl-N-alpha-methylbenzylaminocyclopentane-1-carboxylate in quantitative yield and in > 98% de, with subsequent deprotection by hydrogenolysis and ester hydrolysis giving (1S,2S,3R)-3-methyltranspentacin hydrochloride in > 98% de and 97 +/- 1% ee.  相似文献   

12.
The diastereoselective conjugate addition of lithium (S)-N-benzyl-N-[small alpha]-methylbenzylamide has been successfully applied to the first asymmetric syntheses of cis-(3S,4R)- and trans-(3R,4R)-4-aminotetrahydrofuran-3-carboxylic acids (26% and 25% overall yield respectively, >98% d.e. and >97% e.e. in each case). Furthermore, the most efficient asymmetric synthesis to date of cis-(3R,4R)- and trans-(3R,4S)-4-aminopyrrolidine carboxylic acids is delineated: for cis-(3R,4R), four steps, >98% d.e., 52% overall yield; for trans-(3R,4S), five steps, >98% d.e., 50% overall yield.  相似文献   

13.
Products of the gas-phase reactions of OH radicals with O,O-diethyl methylphosphonothioate [(C2H5O)2P(S)CH3, DEMPT] and O,O,O-triethyl phosphorothioate [(C2H5O)3PS, TEPT] have been investigated at room temperature and atmospheric pressure of air using in situ atmospheric pressure ionization mass spectrometry (API-MS) and, for the TEPT reaction, gas chromatography and in situ Fourier transform infrared (FT-IR) spectroscopy. Combined with products quantified previously by gas chromatography, the products observed were: from the DEMPT reaction, (C2H5O)2P(O)CH3 (21+/-4% yield) and C2H5OP(S)(CH3)OH or C2H5OP(O)(CH3)SH (presumed to be C2H5OP(O)(CH3)SH by analogy with the TEPT reaction); and from the TEPT reaction, (C2H5O)3PO (54-62% yield), SO2 (67+/-10% yield), CH3CHO (22-40% yield) and, tentatively, (C2H5O)2P(O)SH. The FT-IR analyses showed that the formation yields of HCHO, CO, CO2, peroxyacetyl nitrate [CH3C(O)OONO2], organic nitrates, and acetates from the TEPT reaction were <5%, 3+/-1%, <7%, <2%, 5+/-3%, and 3+/-2%, respectively. Possible reaction mechanisms are discussed.  相似文献   

14.
Reaction of 3-nitrotyrosine with HOCl in aqueous phosphate buffer (pH 7.4) leads to a mixture of extractable products, including 3,5-di(4-hydroxy-3-nitrophenyl)pyridine (15% isolated yield) and 3,5-di(4-hydroxy-3-nitrophenyl)-2-(4-hydroxy-3-nitrophenylmethyl)pyridine (3%) arising by a Chichibabin-like pyridine synthesis via N-chloroimine intermediates. Under the same conditions, phenylalanine gives 3,5-diphenylpyridine in 9% isolated yield, while tyrosine leads to 3,5-di(4-hydroxyphenyl)pyridine (3%) and 3-(3-chloro-4-hydroxyphenyl)-5-(4-hydroxyphenyl)pyridine (3%).  相似文献   

15.
An outstanding example of structural diversity and complexity is found in the compounds with the general formula ABi(3)Q(5) (A = alkali metal; Q = chalcogen). gamma-RbBi(3)S(5) (I), alpha-RbBi(3)Se(5) (II), beta-RbBi(3)Se(5) (III), gamma-RbBi(3)Se(5) (IV), CsBi(3)Se(5) (V), RbBi(3)Se(4)Te (VI), and RbBi(3)Se(3)Te(2) (VII) were synthesized from A(2)Q (A = Rb, Cs; Q = S, Se) and Bi(2)Q(3) (Q = S, Se or Te) at temperatures above 650 degrees C using appropriate reaction protocols. gamma-RbBi(3)S(5) and alpha-RbBi(3)Se(5) have three-dimensional tunnel structures while the rest of the compounds have lamellar structures. gamma-RbBi(3)S(5), gamma-RbBi(3)Se(5), and its isostructural analogues RbBi(3)Se(4)Te and RbBi(3)Se(3)Te(2) crystallize in the orthorhombic space group Pnma with a = 11.744(2) A, b = 4.0519(5) A, c = 21.081(3) A, R1 = 2.9%, wR2 = 6.3% for (I), a = 21.956(7) A, b = 4.136(2) A, c = 12.357(4) A, R1 = 6.2%, wR2 = 13.5% for (IV), and a = 22.018(3) A, b = 4.2217(6) A, c = 12.614(2) A, R1 = 6.2%, wR2 = 10.3% for (VI). gamma-RbBi(3)S(5) has a three-dimensional tunnel structure that differs from the Se analogues. alpha-RbBi(3)Se(5) crystallizes in the monoclinic space group C2/m with a = 36.779(4) A, b = 4.1480(5) A, c = 25.363(3) A, beta = 120.403(2) degrees, R1 = 4.9%, wR2 = 9.9%. beta-RbBi(3)Se(5) and isostructural CsBi(3)Se(5) adopt the space group P2(1)/m with a = 13.537(2) A, b = 4.1431(6) A, c = 21.545(3) A, beta = 91.297(3) degrees, R1 = 4.9%, wR2 = 11.0% for (III) and a = 13.603(3) A, b = 4.1502(8) A, c = 21.639(4) A, beta = 91.435(3) degrees, R1 = 6.1%, wR2 = 13.4% for (V). alpha-RbBi(3)Se(5) is also three-dimensional, whereas beta-RbBi(3)Se(5) and CsBi(3)Se(5) have stepped layers with alkali metal ions found disordered in several trigonal prismatic sites between the layers. In gamma-RbBi(3)Se(5) and RbBi(3)Se(4)Te, the layers consist of Bi(2)Te(3)-type fragments, which are connected in a stepwise manner. In the mixed Se/Te analogue, the Te occupies the chalcogen sites that are on the "surface" of the layers. All compounds are narrow band-gap semiconductors with optical band gaps ranging 0.4-1.0 eV. The thermal stability of all phases was studied, and it was determined that gamma-RbBi(3)Se(5) is more stable than the and alpha- and beta-forms. Electronic band calculations at the density functional theory (DFT) level performed on alpha-, beta-, and gamma-RbBi(3)Se(5) support the presence of indirect band gaps and were used to assess their relative thermodynamic stability.  相似文献   

16.
(1)H NMR data for cis-3-n-propoxycyclohexanol (cis-3-PCH) and cis-3-isopropoxy-cyclohexanol (cis-3-ICH) show that a concentration increase shifts the conformational equilibrium from the diaxial (aa) conformer, stabilized by an intramolecular hydrogen bond (IAHB), to the diequatorial (ee) conformer [X(ee)=42% and 21% (at 0.01molL(-1)) to 58% and 56% (at 0.40molL(-1)), in CCl(4,) respectively] due to intermolecular hydrogen bonds (IEHB), as confirmed by IR data. The Deltanu values, obtained by IR spectra, indicated that increasing the size of the OR group [R=CH(3), CH(2)CH(2)CH(3) and CH(CH(3))(2)], increases the IAHB strength, due to an increase in the inductive effect of R group, which makes the oxygen lone pairs more available for an IAHB with OH group, in opposition to the steric effect. The percentage of ee conformer increases with the solvent basicity for cis-3-PCH and cis-3-ICH, from 48% and 36% in CCl(4) to 97% and 96% in DMSO, respectively. Values of 4.58, 6.06 and 6.33kcalmol(-1) for the IAHB strength in cis-3-PCH, cis-3-ICH and cis-3-TCH (cis-3-tert-butoxycyclohexanol), respectively, were obtained, from the theoretical data through the CBS-4M method, confirming the experimental results and indicating that the IAHB strength increases with the increasing bulk of OR substituent in this series of compounds.  相似文献   

17.
Simmondsia chinensis L. commonly called as Jojoba and belongs to family Simmondsiaceae. It has shown positive pharmacological activities of these compounds which include antidiabetic, antirheumatic, anthelminthic, antipsoriatic, antioxidant, antiepileptic, antigonorrheal, analgesic, anti-inflammatory, and pesticidal activity of jojoba. The multifaceted action of numerous bioactives existing in the seed extract with therapeutic activity have attracted great research interest by pharmaceutical industries. n-hexane extract of Simmondsia chinensis L. (SC) Seeds was analysed by gas chromatography-mass spectroscopy for identification and characterization of phytobioconstituents and its therapeutic claim by traditional system. The major compounds discovered in SC seeds extract are cis-9-octadecen-1-ol (24.85%), 9-octadecen-1-ol, (Z)- (18.24%), Stigmast-5-en-3-ol (14.10%), Ergost-5-en-3-ol, (3-β)-ol (5.26%), (Z)-14-tricosenyl formate (5.24%), Thiositosteroldisulfide (3.64%), Silane, Dimethyl (dimethylpentyloxysilyloxy) tetradecyloxy- (3.41%), Ergost-5-ene, 3-methoxy-, (3β,24R)- (2.55%), Ergosta-5,22-dien-3-ol (2.22%), 1,19-eicosadiene (2.17%), Pentacosane (2.02%), Stigmasta-5,22-dien-3-ol (1.64%), 1,19-eicosadiene (1.57%), 9-octadecen-1-ol, (Z)- (1.46%), 9,19-cyclo-9β-lanostan-3β-ol, 24-methylene- (1.14%), (9Z)-9-octadecenyl palmitate (1.50%), Hexadecanoic acid, 9-octadecenyl ester, (Z) (1.37%), 9Z)-9-octadecenyl (9Z)-9-hexadecenoate (1.01%). The hexane extract of Simmondsia chinensis seeds comprises various polar and nonpolar phytobioconstituents. These compounds were established qualitatively via GC-MS evaluation. GC-MS reports will be promising in pharmaceutical sector in identification of variety of Phytobioconstituents in distinct plant extracts, polyherbal extract and the standardization of particular plant materials.  相似文献   

18.
2,2'-联吡啶桥连的双-4,4'-联吡啶哑铃型化合物的合成   总被引:5,自引:0,他引:5  
二甘醇2与对甲苯磺酰氯在CH_2Cl_2中,0 ℃~r.t.及Et_3N存在下反应得2- (羟乙氧基)乙醇对甲苯磺酸酯(3),收率88%。化合物3与对叔丁基苯甲酰氯在 CH_2Cl_2中0~5 ℃及吡啶存在下反应得2-(对叔丁基苯甲酰氧基乙氧基)乙醇对 甲苯磺酸酯(4),收率96%。4与对羟苯甲醇在乙腈中及CsF/K_2CO_3存在下70 ℃ 反应得2-(对叔丁基苯甲酰氧基乙氧基)乙氧苄醇(5),收率98%。5与NBS及 PPh_3在THF中,室温下反应得化合物2-(对 丁基苯甲酰氧基乙氧基)乙氧苄溴 (6),收率95%。6与4,4'-联吡啶在乙腈中,60 ℃反应1h得N-[2-(对叔丁基 苯甲酰氧基乙氧基)乙氧苄基]-4,4'-联吡啶六氟磷酸盐(7),收率85%。7与 α,α-二(溴甲基)-2,2'-联吡啶在乙腈中,油浴60 ℃反应36h,得到标题化 合物,产率为45%。  相似文献   

19.
The reaction of 1,3,5-cis-triazidocyclohexane with the electron-rich tris(dialkylamino)phosphines P(NMe(2))(3) (1) and N(CH(2)CH(2)NMe)(3)P (2b) in acetonitrile for 3 h furnished the corresponding tris-phosphazides 1,3,5-cis-(R(3)PN(3))(3)C(6)H(9), 3a (R(3)P = 1) and 3b (R(3)P = 2b), in 90% and 92% yields, respectively. The same reaction with the relatively electron-poor tris(dialkylamino)phosphine MeC(CH(2)NMe)(3)P (4) for 2 days gave the tris-iminophosphorane, 1,3,5-cis-(R(3)PN)(3)C(6)H(9), 5a (R(3)P = 4), in 60% yield. Compound 3b is a thermally stable solid that did not lose dinitrogen when refluxed in toluene for 24 h or when heated as a neat sample at 100 degrees C /0.5 Torr for 10 h. By contrast, tris-phosphazide 3a decomposed to the tris-iminophosphorane 1,3,5-cis-(R(3)PN)(3)C(6)H(9), 5b (R(3)P = 1), in 3 h in quantitative yield upon heating to 100 degrees C in toluene. Factors influencing the formation of the phosphazides or the iminophosphoranes in these reactions are discussed. The reaction of 3b with 4 equiv of benzoic acid gave [N(CH(2)CH(2)NMe)(3)P=NH(2)]PhCO(2) ([6bH]PhCO(2)) in quantitative yield along with benzene (56% yield) and dinitrogen. The same reaction with 3a gave [(Me(2)N)(3)P=NH(2)]PhCO(2) ([7aH]PhCO(2)) (quantitative yield), benzene (15% yield), and dinitrogen(.) Treatment of [6bH]PhCO(2) with KO(t)Bu afforded N(CH(2)CH(2)NMe)(3)P=NH (6b) in 40% overall yield. Compound 6b upon treatment with PhCH(2)CH(2)Br produced [6bH]Br in 90% yield along with styrene. The new compounds were characterized by analytical and spectroscopic methods, and selected compounds (3b, 5a, and [6bH]Br) were structured by X-ray crystallography. A special feature of 3b is its capability to function as a starting material for 6b, which was not accessible by other synthetic routes.  相似文献   

20.
Reactions of oligomeric "Ca(dbbfo)2" and Ca9(CH3OCH2CH2O)18(CH3OCH2CH2OH)2 with Al(CH3)3 in toluene gave tetranuclear heterobimetallic [Ca(mu-dbbfo){(mu-dbbfo)(mu-CH3)Al(CH3)2}]2 (71%) and polymeric Ca{(mu-CH3OCH2CH2O)(mu-CH3)Al(CH3)2}2 (86%). The latter can be obtained as monomeric THF adduct Ca{(mu-CH3OCH2CH2O)Al(CH3)3}2(THF)2 (78%) when a mixture of solvents is used. The results, including an initial L-lactide polymerization test, are discussed in the context of calcium alkoxo cluster degradation in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号