首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
采用一种智能温度补偿电路对雪崩光电二极管的反偏电压进行温度补偿,抵消环境温度对雪崩光电二极管的影响,从而大大降低了系统的温度漂移.采用该温度补偿电路的系统可在0℃到60℃的环境温度范围内将温漂引起的测量偏差控制在±0.1℃之内.和传统的恒温装置相比,采用该温度补偿电路可有效地降低系统的功耗和成本.相对采用热敏电阻的温度...  相似文献   

2.
雪崩光电二极管单光子探测器是一种具有超高灵敏度的光电探测器件,在远距离激光测距、激光成像和量子通信等领域有非常重要的应用.然而,由于雪崩光电二极管单光子探测器的雪崩点对工作温度高度敏感,因此在外场环境下工作时容易出现增益波动,继而导致单光子探测器输出信号的延时发生漂移,严重降低了探测器的时间稳定性.本文发展了一种稳定输出延时的方法,采用嵌入式系统控制雪崩光电二极管,使其处于恒定温度,并实时补偿由环境温度引起的延时漂移,实现了雪崩光电二极管单光子探测器的高时间稳定性探测.实验中,环境温度从16 ℃变化到36 ℃,雪崩光电二极管的工作温度稳定在15 ℃,经过延时补偿,雪崩光电二极管单光子探测器输出延时漂移小于±1 ps,时间稳定度达到0.15 ps@100 s.这项工作有望为全天候野外条件和空间极端条件下的高精度单光子探测应用提供有效的解决方法.  相似文献   

3.
针对脉冲激光测距机工作环境温度变化和不同测距目标的需要,设计了一种具有温度补偿功能的雪崩光电二极管(APD)数控偏压电路,并对电路系统进行了理论分析和试验验证。结果表明,电路系统输出电压不仅可以有效地减少环境温度对APD增益的影响,而且能够根据上位机指令调节偏压大小,保证APD处于最佳工作状态,使测距机性能得到优化。  相似文献   

4.
目前单光子雪崩光电二极管的标定系统主要是通过分立的通用测试仪器搭建而成。由于单光子雪崩光电二极管的工作模式存在多样化的特点,因此使用该方法搭建的标定系统具有缺乏兼容性、复杂度高、集成化程度低等不足。针对这些问题,本文发展了一种基于现场可编程门阵列的,可以兼容各种雪崩抑制模式的,高度集成化的多种材料体系器件兼容的单光子雪崩光电二极管标定系统。该系统使用现场可编程门阵列替代函数发生器、脉冲产生器和计数器等仪器设备,并利用现场可编程门阵列实现不同雪崩抑制模式下雪崩光电二极管的驱动电路和标定光源的智能切换,从而大幅提高了系统的兼容性和集成化程度,也进一步降低了系统的复杂度、提高了系统的稳定度。文中,我们利用该系统对工作在主动抑制模式的硅雪崩光电二极管和门控盖革模式的铟镓砷/铟磷雪崩光电二极管进行了标定实验。标定结果显示所标定的硅雪崩光电二极管的最大探测效率为49.82%,对应暗计数为1.41kHz;铟镓砷/铟磷雪崩光电二极管的最大探测效率为7.14%,对应暗计数为831 Hz,在探测效率为5%时,后脉冲的概率为5.84%。实验结果表明,我们为单光子雪崩光电二极管标定提供了一种便捷的一体化解决方案,提高了单光子雪崩光电二极管的标定效率和标定系统的实用化程度。  相似文献   

5.
胡红光 《应用光学》2000,21(Z1):53-57
简介一种以锗雪崩光电二极管(APD)为光电转换器件的探测器电路的工作原理,详细介绍电路各组成部分的设计要求和设计要点.该电路可用于光学测距和微弱光的探测装置.  相似文献   

6.
针对雪崩光电二极管(Si-APD)所加偏压需要随环境温度作调整,且偏压电路所需的低纹波低噪声等因素,构建了以Royer振荡器和微控制器为核心的偏压电路。该Si-APD偏压电路以BL8032型同步降压控制器作为Royer振荡器的输入电源,以MS5221M型DAC作为该输入电源的调整单元,以AD8606型集成运放和AD7980型ADC作为Royer振荡器输出电压采样单元,以STM32F103TBU6型微控制器作为计算与时序控制单元。本偏压电路不仅具有温度自适应性,而且具有低纹波、低噪声、低功耗和电气安全隔离的特点,能在9~36 VDC宽输入电压范围和-40~70℃环境下良好工作。  相似文献   

7.
赵洪志  李乃吉 《光子学报》1996,25(11):1028-1031
本文分析了基于背向喇曼散射的分布式光纤温度传感器中光电接收用雪崩光电二极管雪崩增益对接收电路信噪比的影响,给出了使传感系统接收电路输出信号信噪比最大这一最佳意义下APD雪崩增益的表达式并进行了分析,实验结果和理论分析基本一致.  相似文献   

8.
光电探测系统温度自动补偿技术   总被引:1,自引:0,他引:1  
光电元器件的基本参数都随温度而变化,这严重地影响了由它们组成的光电探测系统对环境温度的适应性,本文运用信号与系统的理论,分析光电探测系统自动温度补偿技术的原理,提出温度自动补偿技术能有效地调整光电探测系统发光器件的工作电流和实现光电探测系统的温度自动补偿功能。  相似文献   

9.
单光子探测系统可以对单个光子进行探测;探测系统含有探测部分、淬灭电路部分和计数部分;探测部分主要由工作在盖革模式下的雪崩光电二极管组成;在盖革模式下的雪崩光电二极管发生雪崩后不能自然停止,淬灭部分主要为了主动抑制雪崩电流,快速降低雪崩电压,以达到提高探测效率,降低错误计数的目的;APD线列产生多个光子脉冲信号,计数部分的主要功能是对多路光子脉冲信号进行计数、显示并且可以控制每路APD的比较电压,保证每路APD淬灭电路的正常工作。  相似文献   

10.
报导了一种集成MEMS的光接收器件的10Gb/s雪崩光电二极管,并介绍了10Gb/s APD-TIA的结构和基本特点.对衰减器进行了性能测试,所得到的特性曲线表明其衰减随所加电压变化而变化.集成MEMS VOA接收器的动态范围至少增加了50%达到13dB,这个结果对密集波分复用系统中的应用非常理想,同时对高速通信系统中的信号改变是一种有效的补偿方式.本文报导了传输速率10Gb/s带衰减器的雪崩光电二极管光接收器的眼图和测试结果,能够获得的灵敏度和清晰的眼图雪崩光电二极管光接收器的眼图和测试结果,能够获得-26.5dBm的灵敏度和清晰的眼图.  相似文献   

11.
解调飞机上变栅距光栅位移传感器的微型光谱仪在受到严重的高低温冲击后会出现温度漂移。针对航空领域中变栅距光栅位移传感器的解调系统研制了一种具有实时温度补偿功能的微型光纤光谱仪。为了实现实时温度补偿,分析了温度变化对微型光谱仪的影响,并对传统的交叉式Czerny-Turner光路进行了优化,用ZEMAX软件模拟得到:在相同的受热产生的变形条件下,优化的C-T光路光谱漂移量相比优化前的更小且整体漂移线性度更好。在此基础上提出了一种引入参考光来实现实时温度补偿的方法,并最终基于改进的C-T光路制作了一个体积为80 mm×70 mm×70 mm、工作波段在500~1 000 nm、积分时间为8 ms~1 000 ms、光学分辨率约为2 nm的微型光纤光谱仪,用实验验证了优化的C-T光路的光谱温度漂移情况及温度补偿方案的可行性。实验结果表明在近60 ℃范围内的温度冲击下,研制的微型光谱仪能够达到波长标准误差小于0.1 nm,波长最大误差小于传感器系统所要求的0.3 nm,满足初始的设计要求。该微型光谱仪的创新之处在于采用了优化的交叉式C-T光路作为色散系统且基于引入参考光的方法实现了实时温度补偿功能。  相似文献   

12.
本文根据半导体GaAs材料带隙随温度变化的原理,对采用单根光纤作双向传输光信号的反射光纤温度传感器进行了试验研究。由微型计算机控制的光纤测温系统的测温范围为0~150℃精度±1℃,分辨率0.2℃。  相似文献   

13.
理论分析了兰州重离子加速器腔体的低电平稳定系统中各传输通道对腔体的长期稳定度的影响,根据现有低电平稳定系统的实际情况,提出了用附加测试电缆来补偿反馈电缆漂移的方法。测试了环境温度的变化对电缆在实施补偿前后的相位与损耗的影响,测试结果表明:采用电缆补偿后的长期相位稳定度可以降低到原来的1/50,长期幅度漂移可以最少降低到原来的1/10。  相似文献   

14.
The temperature dependences of the light output of CsI(Tl) crystal grown at IMP and of the gain of the Hamamatsu S8664-1010 avalanche photodiode (APD) have been investigated systematically. The light output of the CsI(Tl) crystal increases with temperature by 0.67%/℃ in the region from -2℃ to 8℃, and by 0.33%/℃ in the region from 8℃ to 25℃, while the gain of the tested APD decreases by -3.68%/℃ (working voltage 400V) on average in the room temperature range. The best energy resolution 5.1% of the CsI(Tl) with APD was obtained for the 662keV γ ray from 137Cs radiation source.  相似文献   

15.
动态匹配光栅解调传感系统温度补偿研究   总被引:2,自引:1,他引:1  
翟玉锋  张龙  李飞  于清华  刘勇  王安 《光子学报》2008,37(7):1369-1372
采用一对辅助匹配光纤光栅,结合基于MAX1968EUI芯片闭环自动控制,设计了一种半导体小型温度控制系统.通过控制传感光栅反射峰值变化,使匹配光栅温度变化与传感光栅周围环境温度变化相匹配,实现了动态匹配光栅解调方案的应变测量系统温度补偿,消除了光纤光栅传感器温度、应变交叉敏感效应对传感系统测量应变的影响.解调系统同时采用一支微测力传感器作为解调系统的输出,消除了传统动态匹配光栅解调系统中压电陶瓷磁滞效应对测量结果的影响.实验结果表明,温度变化对系统应变测量影响误差小于2%,传感系统的线性优于0.999 5.  相似文献   

16.
李长胜  陈佳  王伟岐  郑岩 《中国光学》2017,10(4):514-521
利用ZnS…Cu电致发光粉末与环氧树脂胶混合,设计制作了一种梯形电极结构的电压传感单元,实现了电致发光电压传感器输出信号的温度漂移补偿。电致发光电压传感信号通过2根塑料光纤传输到2个硅光电探测器,并选择其开路电压作为传感器的输出信号。在同一外加电压条件下,梯形电极区域内的电场分布是不均匀的,因而不同场点的发光亮度不同。通过测量梯形电极区域内2个不同发光点的发光强度随外加电压的变化,并对两路输出电压传感信号进行数据拟合与计算,可获知被测电压的有效值,并可实现对输出信号温度漂移的补偿。在-40~60℃范围内,采用上述温度漂移补偿方法测量了有效值在0.7~1.5 k V范围内的工频电压,传感器输出信号的非线性误差低于1.6%,验证了该温度漂移补偿方法的有效性。  相似文献   

17.
Wakatsuki N  Kudo S  Chiba M 《Ultrasonics》2000,38(1-8):46-50
A new H-type gyroscope using a single LiTaO3 crystal that combines the H-type vibrational mode with a tuning fork type vibrational mode is proposed. This greatly suppresses leakage output from the piezoelectric gyroscope and also improves stability. The operation in the drive mode non-resonant condition and detection mode resonance condition is also proposed. It is possible to increase the sensor sensitivity remarkably because the drive voltage can be increased. In addition, an equivalent circuit constant including the leakage output could be accurately deduced. Automatic compensation of temperature characteristic for angular velocity detection sensitivity and drift is examined with the simple equivalent circuit. By adding a new sensor that detects the drive vibrational mode, we can produce a stable reference signal for the phase detection of output. This shows that it is possible to greatly improve the temperature characteristic of sensitivity and drift.  相似文献   

18.
李永亮  余健辉  张军 《应用光学》2019,40(6):1115-1119
为了实现可见光通信系统的探测器模块微小型化,设计并制作了一款50 cm3的温控APD探测器模块,并对模块的稳定性、温控效果和噪声特性进行了检测。结果表明,APD探测器模块的光电流测量平均相对偏差为0.795%;APD探测器的雪崩增益和响应度随着温度的降低而提高;APD探测器电阻的变化影响负载电阻分压,使得过剩噪声因子的测量值远大于真实值,且会随着入射光功率的增大而增大。可以得出结论:提高反向偏置电压与降低温控温度相配合,更有利于弱光信号检测;检测电路中的负载电阻影响APD探测器噪声特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号