首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Fluid Phase Equilibria》2006,242(2):147-153
Isobaric vapor–liquid equilibrium (VLE) data for ethanol–water systems containing ionic liquids (ILs) 1-methyl-3-methylimidazolium dimethylphosphate ([MMIM][DMP]), 1-ethyl-3-methylimidazolium diethylphosphate ([EMIM][DEP]), 1-butyl-3-methylimidazolium bromide ([BMIM][Br]), 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) at atmospheric pressure (101.32 kPa) were measured with a circulation still. The results showed that the VLE of ethanol–water systems in the presence of different ILs was obviously different from that of the IL-free system. All ILs studied showed a salting-out effect, which gave rise to a change of the relative volatility of ethanol, and even to an elimination of the azeotropic point. It was found that the salting-out effect followed the order of [BMIM][Cl] > [BMIM][Br] > [BMIM][PF6] and [MMIM][DMP] > [EMIM][DEP], which was ascribed to the preferential solvation ability of the ions resulting from the dissociation of the IL.  相似文献   

2.
Ionic liquids (ILs) are molten salts which do not crystallize at room temperature. Tunable physicochemical properties of ILs including hydrophobicity and polarity facilitate their applications in many biological processes. In this study, a copper-based IL was employed in order to enhance the refolding efficiency of laccase from Trametes versicolor which requires copper as a cofactor. When 1-ethyl-3-methylimidazolium trichlorocuprate ([EMIM][CuCl3]) was added to refolding buffer instead of urea, the laccase refolding yield was improved more than 2.7 times compared to the conventional refolding buffer which contains urea. When the refolding of laccase was carried out at different temperatures (4, 25, and 37 °C), the highest refolding yield was obtained at 25 °C. At low temperature, two conflicting effects, i.e., suppression of the aggregate formation and decrease of folding rate, influence the protein refolding. In contrast, a copper-based IL did not enhance the refolding of lysozyme, a non-copper-containing protein. From these results, we can conclude that this copper-based IL, [EMIM][CuCl3], was exclusively effective on the refolding process of a copper-containing protein.  相似文献   

3.
Room temperature ionic liquids are rapidly emerging as a new class of media that are ideally suited for various applications including carrying out chemical reactions. In the present article, we report the photophysics of a β-carboline analogue, namely, 3-acetyl-4-oxo-6,7-dihydro-12H indolo-[2,3-a] quinolizine (AODIQ), in three room temperature ionic liquids (RTILs), 1-butyl-3-methylimidazolium methyl sulfate ([BMIM][MeSO(4)]), 1-butyl-3-methylimidazolium octyl sulfate ([BMIM][C(8)SO(4)]) and 1-ethyl-3-methylimidazolium methyl sulfate ([EMIM][MeSO(4)]). Out of these, [BMIM][C(8)SO(4)] is a typical RTIL that forms micellar aggregates above a critical micellar concentration (CMC). Steady state absorption, steady state and time resolved fluorescence techniques are used to probe the properties of these systems. The investigation reveals that the photophysics of AODIQ is modified significantly in the micelle-forming RTIL as compared to that in the other two. A comparative study with the fluorophore in [BMIM][C(8)SO(4)] and a conventional anionic surfactant of a similar hydrophobic chain length from the sodium-n-alkyl sulfate series, viz., sodium octyl sulfate (S(8)S), reveals that the fluorophore experiences a more constrained environment in the RTIL micelle as compared to the conventional anionic micelle.  相似文献   

4.
Tian Y  Feng R  Liao L  Liu H  Chen H  Zeng Z 《Electrophoresis》2008,29(15):3153-3159
An ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) was introduced as dynamic coating of a silica monolithic column for capillary electrochromatography of phenols and nucleoside monophosphates. The run-to-run and column-to-column repeatability of migration time for six phenols were satisfactory on this column with relative standard deviation values less than 0.90 and 4.31%, respectively. Anodic electroosmotic flow (EOF) was observed, which increased with the increase of [BMIM][BF4] concentration within 120 mM and when [BMIM][BF4] concentration was above 120 mM, EOF leveled off due to the saturation of [BMIM][BF4] on the monolith. Efficient separation of phenols and nucleoside monophosphates on this dynamically coated monolithic column was obtained, compared with a dynamically coated fused-silica column and unmodified silica monolithic column. The retention behavior of uncharged phenols is mainly manipulated by hydrophobic interactions due to the presence of butyl groups, and that of nucleoside monophosphates is governed by the electrostatic attraction mechanism based on the interaction between positively charged [BMIM][BF4] moieties and negatively charged phosphate groups. In addition, silica matrix also contributes to the separation resolution.  相似文献   

5.
This study focuses on the solubility behaviors of CO2, CH4, and N2 gases in binary mixtures of imidazolium-based room-temperature ionic liquids (RTILs) using 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][Tf2N]) and 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2mim][BF4]) at 40 degrees C and low pressures (approximately 1 atm). The mixtures tested were 0, 25, 50, 75, 90, 95, and 100 mol % [C2mim][BF4] in [C2mim][Tf2N]. Results show that regular solution theory (RST) can be used to describe the gas solubility and selectivity behaviors in RTIL mixtures using an average mixture solubility parameter or an average measured mixture molar volume. Interestingly, the solubility selectivity, defined as the ratio of gas mole fractions in the RTIL mixture, of CO2 with N2 or CH4 in pure [C2mim][BF4] can be enhanced by adding 5 mol % [C2mim][Tf2N].  相似文献   

6.
We investigated the structures of ionic liquids (1-butyl-3-methylimidazolium iodide [BMIM][I] and 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4]) and their aqueous mixtures using attenuated total reflection (ATR) infrared absorption and Raman spectroscopy. The ATR spectrum in the CHx (x = 1, 2, 3) vibration region from 2800 to 3200 cm-1 was very different between [BMIM][BF4] and [BMIM][I] even though all the spectral features in this region were from the butyl chain and the imidazolium ring of the same cation. The spectrum did not change appreciably irrespective of the water concentration for [BMIM][BF4], whereas the spectrum from [BMIM][I] showed significant changes as the water concentration was increased, especially in CH-vibration modes from the imidazolium ring. For very diluted solutions both aqueous mixtures of [BMIM][I] and [BMIM][BF4] showed very similar spectra. Mixing of [BMIM][I] with heavy water (D2O) facilitated the isotopic exchange of the proton attached to the most acidic carbon of the imidazolium ring into deuterium from D2O, whereas even prolonged exposure to D2O did not induce any isotopic exchange for [BMIM][BF4]. Raman spectra around 600 cm(-1) indicative of the butyl chain conformation also changed differently as the water concentration was increased between [BMIM][I] and [BMIM][BF4]. These differences are considered to come from the variation in the position of the anion, where I- is expected to be closer to the C(2) hydrogen of the imidazolium cation and interacting more specifically as compared to BF(4-).  相似文献   

7.
The surface tensions were measured at atmospheric pressure, with use of a ring tensiometer, of a series of alcoholic solutions of closely related ionic liquids: 1-methyl-3-methylimidazolium methylsulfate, [MMIM][CH3SO4] in alcohol (methanol, or ethanol, or 1-butanol at 298.15 K), 1-butyl-3-methylimidazolium methylsulfate, [BMIM][CH3SO4] in alcohol (methanol, or ethanol, or 1-butanol at 298.15 K), 1-butyl-3-methylimidazolium octylsulfate, [BMIM][OcSO4] in alcohol (methanol, or 1-butanol at 298.15 K) and of 1-hexyloxymethyl-3-methylimidazolium tetrafluoroborate, [C6H(13)OCH2MIM][BF4], 1,3-dihexyloxymethylimidazolium tetrafluoroborate, [(C6H13OCH2)2IM][BF4] in alcohol (methanol, or 1-butanol, or 1-hexanol at 308.15 and 318.5 K) and hexyl(2-hydroxyethyl)dimethylammonium bromide, C6Br in 1-octanol at 298.15 K. The set of ammonium ionic liquids of different cations and anions (C2Br, C2BF4, C2PF6, C2N(CN)2, C3Br, C4Br and C6Br) was chosen to show the influence of small amount of the ammonium ionic liquid on the surface tension of water at 298.15 K. The influence of the cation, or anion alkyl chain length on the properties under study (densities and surface tension) was tested.  相似文献   

8.
ABSTRACT

The present work is devoted to the thermochemical study of solvation of ionic liquids (IL) in benzene. The solution enthalpies of 1-ethyl-3-methylimidazolium tricyanomethanide [EMIM][C(CN)3], 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4], 1-hexyl-3-methylimidazolium hexafluorophosphate [HMIM][PF6], 1-octyl-3-methylimidazolium tetrafluoroborate [OMIM][BF4], 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [EMIM][NTf2], 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BMIM][NTf2] and 1-butyl-3-methylimidazolium trifluoromethanesulfonate [BMIM][TfO] in benzene were measured. The solvation enthalpies of imidazolium-based IL were calculated. Molar refractions of imidazolium-based IL form literature data on density and refractive indexes of IL were also calculated. The linear correlation between solvation enthalpy and molar refraction of IL was observed. This correlation can be used to calculate the vaporization enthalpy of imidazolium-based IL from solution calorimetry data.  相似文献   

9.
Three different ionic liquids are investigated via atomistic molecular dynamics simulations using the force field of Lopes and PAdua (J. Phys. Chem. B 2006, 110, 19586). In particular, the 1-ethyl-3-methylimidazolium cation EMIM+ is studied in the presence of three different anions, namely, chloride Cl-, tetrafluoroborate BF(4)(-), and bis((trifluoromethyl)sulfonyly)imide TF2N-. In the focus of the present study are the static distributions of anions and cations around a cation as a function of anion size. It is found that the preferred positions of the anions change from being close to the imidazolium hydrogens to being above and below the imidazolium rings. Lifetimes of hydrogen bonds are calculated and found to be of the same order of magnitude as those of pure liquid water and of some small primary alcohols. Three kinds of short-range cation-cation orderings are studied, among which the offset stacking dominates in all of the investigated ionic liquids. The offset stacking becomes weaker from [EMIM][Cl] to [EMIM][BF4] to [EMIM][TF2N]. Further investigation of the dynamical behavior reveals that cations in [EMIM][TF2N] have a slower tumbling motion compared with those in [EMIM][Cl] and [EMIM][BF4] and that pure diffusive behavior can be observed after 1.5 ns for all three systems at temperatures 90 K above the corresponding melting temperatures.  相似文献   

10.
Here we report a systematic study on electrical conductivity and surface tension of various concentrated solutions of imidazolium based room temperature ionic liquids (RTILs), viz. 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][ $\hbox {PF}_{6}$ ]) and 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][ $\hbox {BF}_{4}$ ]) in the cosolvents methanol and acetonitrile at 298.15 K. The aim of the investigations was to explore the impact of cosolvents on bulk and interfacial characteristics of imidazolium based RTILs. It was observed that both methanol and acetonitrile mix non-ideally with and enhance the transport parameters of the imidazolium based RTILs. An interesting outcome of the presented work is that the investigated RTILs retain their inherent structural characteristics up to a high dilution limit with cosolvent, and this limit is higher in acetonitrile than in methanol as cosolvent. The findings establish that, in comparison to methanol, acetonitrile is a better cosolvent that can be used for enhancing the transport parameters of imidazolium based RTILs for electrochemical and other applications. The results are explained in light of structure-composition-property relations and ion-ion and ion-cosolvent interactions.  相似文献   

11.
Room-temperature ionic liquids (RTILs) have received significant attention as electrolytes due to a number of attractive properties such as their wide electrochemical windows. Since electrical double layers (EDLs) are the cornerstone for the applications of RTILs in electrochemical systems such as supercapacitors, it is important to develop an understanding of the structure-capacitance relationships for the EDLs of these systems. Here we present a theoretical framework termed "counter-charge layer in generalized solvents" (CGS) for describing the structure and capacitance of the EDLs in neat RTILs and in RTILs mixed with different mass fractions of organic solvents. Within this framework, an EDL is made up of a counter-charge layer exactly balancing the electrode charge, and of polarized generalized solvents (in the form of layers of ion pairs, each of which has a zero net charge but has a dipole moment--the ion pairs thus can be considered as a generalized solvent) consisting of all RTILs inside the system except the counter-ions in the counter-charge layer, together with solvent molecules if present. Several key features of the EDLs that originate from the strong ion-ion correlation in RTILs, e.g., overscreening of electrode charge and alternating layering of counter-ions and co-ions, are explicitly incorporated into this framework. We show that the dielectric screening in EDLs is governed predominantly by the polarization of generalized solvents (or ion pairs) in the EDL, and the capacitance of an EDL can be related to its microstructure with few a priori assumptions or simplifications. We use this framework to understand two interesting phenomena observed in molecular dynamics simulations of EDLs in a neat IL of 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF(4)]) and in a mixture of [BMIM][BF(4)] and acetonitrile (ACN): (1) the capacitance of the EDLs in the [BMIM][BF(4)]/ACN mixture increases only slightly when the mass fraction of ACN in the mixture increases from zero to 50% although the dielectric constant of bulk ACN is more than two times higher than that of neat [BMIM][BF(4)]; (2) the capacitance of EDLs near negative electrodes (with BMIM(+) ion as the counter-ion) is smaller than that near positive electrodes (with BF(4)(-) as the counter-ion) although the closest approaches of both ions to the electrode surface are nearly identical.  相似文献   

12.
A headspace single drop microextraction (SDME) method using extraction solvents comprised of micellar ionic liquids (ILs) was used to perform the extraction of 17 aromatic compounds from aqueous solution and coupled with liquid chromatography. The effects of various experimental parameters including type of micellar IL extraction solvent, stir rate, extraction time, volume of the microdroplet, and addition of organic solvent were investigated and optimized. Two different micellar solutions were formed by dissolving 1-decyl-3-methylimidazolium bromide ([DMIM][Br]) and sodium dodecyl sulfate (SDS) in 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]). It was observed that the enrichment factors of the 17 studied compounds were all enhanced with the micellar ionic liquid extraction solvent compared to the neat [BMIM][Cl] IL. The highest sensitivity was obtained with the [BMIM][Cl]–[DMIM][Br] micellar solution for polycyclic aromatic hydrocarbons (PAHs) with high molecular weight and fused rings while the [BMIM][Cl]–SDS micellar solution was proven to be more sensitive for smaller, more polar molecules. The detection limits were lower when utilizing the [BMIM][Cl]–SDS and [BMIM][Cl]–[DMIM][Br] extraction solvents compared to the neat [BMIM][Cl] extraction solvent. The reproducibility of the extraction method at 20 °C using extraction solvents composed of [BMIM][Cl]–SDS and [BMIM][Cl]–[DMIM][Br] ranged from 6.7 to 14.0 and 4.2 to 14.7%, respectively.  相似文献   

13.
In view the of wide scope of structural information of biomolecules in biocompatible ionic liquids (ILs) in various applications including chemical and biochemical, it is essential to study the productive preferential interactions between biological macromolecules and biocompatible ILs. We have therefore explored the stability and activity of α-chymotrypsin (CT) in the presence of five ILs from different families, such as triethyl ammonium acetate (TEAA), triethyl ammonium phosphate (TEAP) from ammonium salts, 1-benzyl-3-methylimidazolium chloride ([Bzmim][Cl]), 1-benzyl-3-methylimidazolium tetrafluoroborate ([Bzmim][BF(4)]) from imidazolium salts and tetra-butyl phosphonium bromide (TBPBr) from phosphonium families. Circular dichroism (CD) and UV-vis spectrophotometer experiments were used to study CT stabilization by ILs, related to the associated structural changes and enzyme activity studies, respectively. We observed that all ILs have a dominant contribution to the stabilization of CT. The stability and activity of CT depends on the structural arrangement of the ions of ILs. Our experimental results explicitly elucidate that more hydrophobic imidazolium and phosphonium cations carrying longer alkyl chains of ILs ([Bzmim][Cl], [Bzmim][BF(4)] and TBPBr) were weak stabilizers for CT, while small alkyl chain molecules of triethyl ammonium salts (TEAA and TEAP) are strong stabilizers and therefore more biocompatible for CT stability. Our CD and NMR measurements reveal that TEAA is a refolding additive for CT from a quenched thermal unfolded enzyme structure.  相似文献   

14.
利用X射线吸收精细结构光谱(XAFS)及紫外吸收光谱两种方法, 分析了离子液体1-丁基-3-甲基咪唑溴盐([BMIM]Br)中逐渐掺入1-丁基-3-甲基咪唑四氟硼酸盐([BMIM][BF4])时, Br-阴离子与咪唑阳离子之间氢键作用及电荷偏移量的改变. 随着[BMIM][BF4]加入量增多, Br 元素XAFS近边(XANES)显示吸收峰降低, 吸收边位置向低能端位移0.9 eV; 扩展边(EXAFS)算出径向结构显示Br 与近邻原子间平均配位数降低、平均键长增长; 紫外光谱也有明显蓝移减色效应. 这些结果都表明Br4-的掺入改变了Br-与阳离子间的电荷偏移量, 负电荷更多地转移到Br-上, 量化计算的数据同样支持该结论.  相似文献   

15.
This paper studied application of different types of room temperature ionic liquids (RTILs) into flexible supercapacitors. Typical RTILs including 1-buthyl-3-methyl-imidazolium [BMIM][Cl], trioctylmethylammonium bis(trifluoromethylsulfonyl)imide [OMA][TFSI] and triethylsulfonium bis(trifluoromethylsulfonyl)imide ([SET3][TFSI]) were studied. [SET3][TFSI] shows the best result as electrolyte in electrochemical double-layer (EDLC) supercapacitors with very high specific capacitance of 244 F/g at room temperature, overceiling the performance of conventional carbonate electrolyte such as dimethyl carbonate (DMC) with more stable performance and much larger electrochemical window.  相似文献   

16.
研究了以1-丁基-3-甲基咪唑、四乙基铵及N-乙基吡啶为阳离子, 配以多种阴离子(H2PO4-, ClO4-, HSO4-, CH3COO-, Cl-, Br-, NO3-, SCN-, BF4-, PF6-)的离子液体对木瓜蛋白酶催化N-苯甲酰-L-精氨酸乙酯(BAEE)水解的活性及热稳定性的影响. 通过分析含离子液体体系中木瓜蛋白酶的水解活性和热力学失活参数, 发现该酶活性及稳定性与离子液体的Kosmotropicity性质无关. 因此, 离子的Hofmeister效应并不适合解释离子液体对木瓜蛋白酶催化特性的影响规律. 当以BF4-为阴离子, 改变阳离子结构时, 仅[BMIm][BF4]可提高酶活性, 其它含官能团的咪唑类离子液体则降低酶活性, 但大部分离子液体明显提高木瓜蛋白酶的热稳定性. 在所研究的离子液体中, 基于PF6-或BF4-阴离子的离子液体可提高木瓜蛋白酶的活性及其热稳定性. 在含[BMIm][PF6]介质中, 木瓜蛋白酶的水解活性最高; 在含[HOEtMIm][BF4]介质中其热稳定性最好.  相似文献   

17.
The ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]) and 1-methyl-3-propylimidazolium tetrafluoroborate ([PMIM][BF4]) were studied by H,H-NOESY NMR using a cross-relaxation matrix analysis. Cross-peak intensities are seen to increase with increasing mixing time. Experimental and theoretical hydrogen-hydrogen distances are in agreement at short mixing times (50 ms). Mixing times longer than 50 ms result in an increasing contribution of spin diffusion that produces unrealistically short hydrogen-hydrogen distances. Gas-phase ab initio molecular structures are obtained using Hartree-Fock (HF) and density functional theory (B3LYP) methods at the 6311 + G(2d,p) basis set level. The hydrogen-hydrogen distances obtained from the theoretical structures are in reasonable agreement with those calculated from the cross-relaxation matrices.  相似文献   

18.
We have investigated solvent and rotational relaxation of coumarin 153 (C-153) in room-temperature ionic liquid (RTILs) 1-butyl-3-methyl-imidazolium tetrafluoroborate ([bmim][BF(4)]) and the ionic liquid confined in alkyl poly(oxyethylene glycol) ethers containing micelles. We have used octaethylene glycol monotetradecyl ether (C(14)E(8)) and octaethylene glycol monododecyl ether (C(12)E(8)) as surfactants. In the [bmim][BF(4)]-C(14)E(8) micelle, we have observed only a 22% increase in solvation time compared to neat [bmim][BF(4)], whereas in the [bmim][BF(4)]-C(12)E(8) system, we have observed approximately 57% increase in average solvation time due to micelle formation. However, the slowing down in solvation time on going from neat RTIL to RTIL-confined micelles is much smaller compared to that on going from water to water confined micellar aggregates. The 22-57% increase in solvation time is attributed to the slowing down of collective motions of cations and anions in micelles. The rotational relaxation times become faster in both the micelles compare to neat [bmim][BF(4)].  相似文献   

19.
Single-crystalline Bi(2)S(3) and Sb(2)S(3) nanorods have been successfully synthesized by the microwave-assisted ionic liquid method. The starting reagents were Bi(2)O(3) or Sb(2)O(3), HCl, Na(2)S(2)O(3), and ethylene glycol (EG) or ethanolamine, and the ionic liquid used was 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF(4)]). Our experiments showed that the ionic liquid played an important role in the morphology of M(2)S(3) (M = Bi, Sb). Single-crystalline Bi(2)S(3) nanorods could be prepared in the presence of [BMIM][BF(4)]. However, urchinlike Bi(2)S(3) structures consisting of nanorods were formed without using [BMIM][BF(4)]. Single-crystalline Sb(2)S(3) nanorods were obtained in the presence of [BMIM][BF(4)]. However, single-crystalline Sb(2)S(3) nanosheets could be prepared in the absence of [BMIM][BF(4)]. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and electron diffraction (ED).  相似文献   

20.
The near-surface electronic structure of the room-temperature ionic liquid (RT-IL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][Tf(2)N]) has been investigated with the combination of the electron spectroscopies metastable impact electron spectroscopy (MIES), ultraviolet photoelectron spectroscopy (UPS (HeI and HeII)), and monochromatized X-ray photoelectron spectroscopy (XPS). We find that the top of the valence band states originates from states of the cation (see also ref 1). The ultimately surface-sensitive technique MIES proves that the surface layer consists of both cations and anions. The temperature dependence of the spectra has been measured between about 160 and 610 K. Information on the glass transition and the possibility for low-temperature distillation of [EMIM][Tf(2)N] at reduced pressures is derived from the present results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号