首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 693 毫秒
1.
Electric-field-induced transient pore formation (electroporation) in synthetic unilamellar vesicles is utilized for the preparation of subnanometer size uncapped gold quantum dots. With the precursor AuCl4(-) placed in the aqueous bulk solution and the reducing agent BH4(-) originally entrapped in the vesicles' compartments, the redox reaction--that occurs in the bulk--is initiated by the opening of transient pores in the vesicles' bilayers. The absence of caps permits (i) continued growth of the Au clusters formed, (ii) the assessment of their true absorption spectra unaltered by stabilizing ligands, and (iii) the previously inaccessible live observation of the growth of the clusters in the molecular size regime. The normally rapid self-aggregation of Au atoms is slowed to the time scales of hour and week by their adsorption at the exterior surface of the vesicles. The UV spectra exhibit novel, time-dependent, oscillating red and blue shifts of the characteristic absorption band, which can be attributed to the evolution of cluster size transiently halting at magic aggregation numbers corresponding to Au2, Au8, Au20, and Au34. Subsequent growth is associated with a monotonic red shift of the absorption band up to the characteristic surface plasmon absorption at 520 nm.  相似文献   

2.
Subnanometer size cluster precursors of uncapped CdS quantum dots were produced via the electroporation of synthetic dioleoylphosphatidylcholine (DOPC) unilamellar bilayer vesicles of mean hydrodynamic diameter Dh = 175 nm. During electroporation, Cd2+ ions are ejected from the interior compartments of the vesicles into the bulk solution where they react with S(2-) ions to form CdS monomers. The monomers adsorb on the exterior surface of the vesicles, where their spontaneous self-aggregation to (CdS)n clusters occurs on the hour and day time scale. The stepwise growth of the clusters was monitored through the time evolution of the UV absorption spectrum of the solution. The process is characterized by initial stepwise blue shifts of the absorption maxima: 285 nm --> 269 nm --> 245/275 nm --> 240 nm --> 236 nm, followed by a red shift to 494 nm. Nonlocal density functional theory (DFT) calculations of the optimized geometry and HOMO-LUMO gap of (CdS)n particles with n = 1-6 were carried out. The optimized structures are characterized by strong Cd-Cd bonds, with the S atoms bridging those bonds or capping the faces of the Cd polyhedra. The structure of such clusters bears no resemblance to fragments of the bulk crystal. The trend of the calculated HOMO-LUMO gaps facilitates the attribution of aggregation numbers (n) to particular clusters responsible for the observed absorption bands: n = 1 (285 nm), n = 2 (269 nm), n = 4 (245/275 nm --> 240 nm), n = 5 (236 nm), and larger quantum dots absorbing around 494 nm. The multiple bands assigned to the tetramer reflect the existence of its two distinct structures with similar stability.  相似文献   

3.
Electric-field-induced transient pore formation (electroporation) in synthetic unilamellar dioleoylphosphatidylcholine vesicles of 178-nm diameter is utilized for the preparation of subnanometer-size PbS quantum dots. With Pb2+ ions originally entrapped in the vesicles and S2- ions placed in the bulk, their reaction is initiated by the opening of pores and occurs in the bulk. The ensuing self-aggregation of PbS is slowed to the hour and day time scales by its adsorption at the exterior surface of the vesicles. The growth of the particles in the molecular size regime is found to exhibit novel, time-dependent, oscillating red and blue shifts of the characteristic UV absorption band. On the basis of similarities between the oscillating trend of the experimentally observed transition energy and that of the calculated highest occupied molecular orbital-lowest unoccupied molecular orbital gap of (PbS)n clusters with n = 1-9, the wavelengths of the sequential spectral peaks can be assigned to the PbS monomer (237.5 nm), dimer (282 nm), tetramer (232 nm), hexamer (281 nm), octamer (234.5 nm), and nonamer (278-280 nm). Growth beyond the octamer is associated with the customary monotonic red shift of the absorption band. Under the experimental conditions used, a stable system is reached with unchanging spectral features after 20 days. This solution is estimated to contain 1.82 x 10(-5) M (PbS)9 particles, each with a greatest dimension of <9 A.  相似文献   

4.
Interaction and aggregation of acidic phospholipid (phosphatidylserine) vesicles were studied with variation of cation species and their concentrations in vesicle suspensions, and of vesicle sizes. Aggregation was determined by measuring turbidity of vesicle suspension. The experimental results of aggregation of vesicles induced by monovalent cations (Na+, K+, Cs+ and TMA+) were explained well in terms of the interaction energy of two interacting vesicles using the ordinary Derjaguin–Landau–Verwey–Overbeek (DLVO) theory for both small and large lipid vesicles. However, the experimental results of aggregation of vesicles induced by divalent cations (Ca2+, Mg2+ and Ba2+) were not explained by the ordinary DLVO theory. In order to explain the experimental results of these vesicle aggregation phenomena, it was necessary to modify the theory by including hydration interaction energies which are due to hydrated water at membrane surfaces, and their magnitude and sign depend upon the nature (hydrophobicity) of the membrane surface.  相似文献   

5.
TiO2多级空心微球(THHSs)具有高的比表面积、强的光散射效应以及良好的电子传输性质,以此作为光阳极材料,可以显著提升CdS/CdSe敏化太阳能电池(QDSSCs)的性能。但基于化学浴沉积方法获得的这一类电池中量子点在光阳极表面的覆盖度通常不高(50%左右),本文发展了一种基于表面选择性吸附原理的多步沉积方法,选取特定分子(正十二硫醇)限制已有量子点的生长,通过二次沉积成功提高了CdS/CdSe在TiO2多级空壳微球表面的覆盖度。使用此方法最终得到高达85.4%的覆盖度。结果表明,量子点覆盖度的增加有效提高了电池对太阳光的利用率,使得光电流获得了明显的增加。同时,二氧化钛空白表面积的减小还可以抑制电子和空穴的复合。优化后的电池光电流密度为15.69 mA·cm-2,填充因子为0.583,电压为0.605 V,最高光电转换效率为5.30%。  相似文献   

6.
We studied the effects of the degree of ionization() and the surfactant concentration (Cd) on the micelle–vesicle transition in salt-free oleyldimethylamine oxide (OlDMAO) aqueous solutions by the dynamic light scattering (DLS), the hydrogen ion titration, the small angle neutron scattering (SANS), the electrophoretic light scattering (ELS) and viscoelastic measurements. From the study of ionization effects, the micelle–vesicle transition was recognized as a change of aggregate size by the DLS measurement; however, the micelle–vesicle transition was not detected both in the ELS measurement and the hydrogen ion titration, suggesting that the electric properties of the worm-like micelles and the vesicles are very similar despite a large difference of shapes between them. From the results of the SANS, the DLS and the viscosity measurements, it was suggested that a concentration-dependent micelle–vesicle transition took place around Cp = 10 mmol kg−1 for the solutions at = 0.5. In the concentration-range 10 mmol kg−1 < Cd < 150 mmol kg−1, the micelles and the vesicles coexisted. In the concentration region (Cd = 10–50 mmol kg−1), the vesicle size increased with the surfactant concentration.  相似文献   

7.
Due to their tunable optical properties and their well-defined nanometric size, core/shell nanocrystals (quantum dots, QDs) are extensively used for the design of biomarkers as well as for the preparation of nanostructured hybrid materials. It is thus of great interest to understand their interaction with soft lipidic membranes. Here we present the synthesis of water-soluble peptide CdSe/ZnS QDs and their interaction with the fluid lipidic membrane of vesicles. The use of short peptides results in the formation of small QDs presenting both high fluorescence quantum yield and high colloidal stability as well as a mean hydrodynamical diameter of 10 nm. Their interaction with oppositely charged vesicles of various surface charge and size results in the formation of hybrid giant or large unilamellar vesicles covered with a densely packed layer of QDs without any vesicle rupture, as demonstrated by fluorescence resonance energy transfer experiments, zetametry, and optical microscopy. The adhesion of nanocrystals onto the vesicle membrane appears to be sterically limited and induces the reversion of the surface charge of the vesicles. Therefore, their interaction with small unilamellar vesicles induces the formation of a well-defined lamellar hybrid condensed phase in which the QDs are densely packed in the plane of the layers, as shown by freeze-fracture electron microscopy and small-angle X-ray scattering. In this structure, strong undulations of the bilayer maximize the electrostatic interaction between the QDs and the bilayers, as previously observed in the case of DNA polyelectrolytes interacting with small vesicles.  相似文献   

8.
Interactions of small unilamellar negative vesicles composed of diphosphatidylglycerol (cardiolipin, CL2−), 20 mol%, and phosphatidylcholine (egg yolk lecithin, EL), 80 mol%, with various cationic polymers (CP) derived from poly(4-vinylpyridine) (PVP) were studied in water and water–salt solutions by means of photon correlation spectroscopy, microelectrophoresis, conductometry, and fluorescence techniques. The linear charge density and hydrophilic lipophilic balance of CPs were varied by quaternization of PVP with various amounts of different alkyl bromides (ethyl-(2), heptyl-(7), dodecyl-(12), cetyl-(16)). Substantial differences were observed in the behavior of exhaustingly N-ethylated PVP (CP2) and PVP N-ethylated to 50 mol% (CP2(50)) or 30 mol% (CP2(30)). All of them adsorb to the CL2−/EL vesicle membrane, neutralizing the surface negative charge and causing aggregation of the vesicles. However, CP2, a polycation with a maximum linear charge density, strongly enhances transfer of the negative lipid ions from the inner to outer bilayer leaflet, while CP2(50) and CP2(30) do not. Adsorbed CP2 does not disturb integrity of the vesicle membrane and can be completely removed from the surface of aggregated vesicles by adding a simple salt (NaCl) or a negative linear polyelectrolyte (polyacrylic acid (PAA) sodium salt). Such removal is followed by release of the original vesicles. In contrast to that, adsorbed CP2(50) or CP2(30) produce some leak through the lipid bilayer and cannot be completely desorbed either by increasing ionic strength or adding an excess of PAA. The probable reason of these differences is discussed. PVP partially N-alkylated with dodecyl or cetyl bromides (3 mol%) and then completely N-ethylated (CP2,12 and CP2,16), also having a maximum linear charge density, adsorbs to the negative vesicle surface as a result of both electrostatic binding and hydrophobic interaction. Bulky hydrocarbon pendant groups incorporate into the inner bilayer compartment. Similarly to CP2(50) and CP2(30), CP2,12 and CP2,16 cannot be removed from the surface either by adding the simple salt, or an excess of PAA. However, in contrast to CP2(50) and CP2(30), the polycations with the bulky hydrocarbon pendant groups do not cause any leak through the vesicle membrane. Finally, we have succeeded to prepare the ternary vesicles also composed of 20 mol% of CL2−, but partially replacing EL for polyoxyethylene 20 cetyl ether (Brij 58) (up to 30 mol%). The CL2−/EL/Brij vesicle carries a hydrophilic corona formed by polyoxyethylene chains exposed into water, while hydrophobic cetyl radicals are incorporated in the lipid bilayer. The CL2−/EL/Brij vesicles adsorb all studied CPs similar to the binary CL2−/EL vesicles. This means that polyoxyethylene corona is permeable for polycationic species restricting neither electrostatic binding nor incorporation of bulky hydrocarbon groups of CP2,16 into the membrane. However, the corona effectively stabilizes the CP-vesicle complexes against aggregation when the membrane surface is neutralized.  相似文献   

9.
Vesicles formed from the polymerizable phospholipid, 1,2-diacyl-sn-glycero-3-(N-2(methacryloyloxy)ethyl)-phosphocholine, and the crosslinker, 1,2-dihydroxyethylene-bis-acrylamide, exhibit significantly enhanced stability relative to egg phosphatidylcholine (PC) vesicles. As evidenced by absorbance measurements, methacrylate PC vesicles with a 1 : 75 crosslinker-to-lipid molar ratio retain their integrity in up to 20% (v/v) ethanol as opposed to <10% (v/v) for egg PC vesicles. These crosslinked-polymerized vesicles also remain impermeable to Cd2+ (in the absence of ionophore) for up to 15 mM octyl glucoside. Furthermore, the crosslinked-polymerized vesicles show enhanced stability under osmotic stress. These inprovements in vesicle robustness are attained without dramatic loss in A23187-mediated Cd2+ permeability. The initial Cd2+ permeability of crosslinked-polymerized (1 : 75 crosslinker-to-lipid molar ratio) and egg PC vesicles, with A23187 as ionophore, measured 6.0 × 10−5 and 9.8 × 10−5 cm s−1, respectively.  相似文献   

10.
Microporous microspheres can be used as functional nanomaterial carriers for their microporous structure and higher specific surface area. In this study, magnetic fluorescent polymer microspheres were prepared by incorporating Fe3O4 nanoparticles and CdSe/ZnS quantum dots(QDs) into hyper-crosslinked microporous polymer microspheres(HCMPs) via the in situ coprecipitation method and swelling-diffusion. The HCMPs predominantly have micropores, and their specific surface area is as high as 703.4 m2/g. The magnetic-fluorescent microspheres maintain the superparamagnetic behavior of Fe3O4, and the saturation magnetization reaches 38.6 A·m2/kg. Moreover, the composite microspheres exhibit an intense emission peak at 530 nm and achieve good fluorescence.  相似文献   

11.
Cell-sized giant vesicles, produced by electroformation, were composed of phospholipids and zein (a hydrophobic protein that occupied a substantial percentage of the vesicle surface). Addition of sodium dodecyl sulfate removed the protein into the bulk phase, which led to a shrinkage of the vesicles. The vesicle bilayers were able to heal themselves from the damage caused by the departure of the zein, allowing the bilayers to maintain their spherical morphology. Giant vesicle growth was also observed when the following components were mixed (all four being necessary): (a) negatively charged giant vesicles, (b) membrane-incorporated zein, (c) positively charged submicroscopic vesicles (almost 103 times smaller than the giant vesicles), and (d) sodium dodecyl sulfate. The simplest mechanism consistent with literature data involves electrostatically promoted binding of the small vesicles (weakened by the surfactant) onto the giant vesicle surface, followed by the merging of membranes at protein-induced "fusion hot spots". The "feeding" of small vesicles by giant vesicles then leads to growth.  相似文献   

12.
We report on the use of a natural Lewis type saccharide ligand, 3′-sulfo-Lewis a (SuLea) for glycocalyx-mimetic surface modification of liposomes. Two SuLea-containing glycolipids, monovalent SuLea-lipid and trivalent SuLea (TSuLea)-lipid, were synthesized, and used with 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and cholesterol to prepare unilaminar vesicles (ULVs) by a freeze–thaw and extrusion method. The effects of the glycolipid concentrations and the pore sizes of extrusion membranes on vesicle size and stability were investigated by photon correlation spectroscopy (PCS). Glycoliposomes, with 5% SuLea- or TSuLea-lipids obtained by 50 nm extrusion, had 25–30% more vesicles less than 100 nm in diameter compared with the 100 nm extrusion. TSuLea-liposomes always produced larger vesicle size than SuLea-liposomes, which we attribute to the larger TSuLea headgroup. Both SuLea- and TSuLea-liposomes increased their vesicle size with increasing glycolipid concentration from 5% to 15%, and demonstrated good stability at room temperature for over 1 month. Further increasing the glycolipid concentration to 20% resulted in large vesicle aggregation after 5 days for TSuLea-liposomes, while the SuLea-liposomes remained stable for 10 days. SuLea- and TSuLea-liposomes with 15% glycolipids demonstrated better stability due to the electrostatic effect from the negatively charged SuLea and TSuLea headgroups. The results indicate that the biomimetic liposomes with SuLea- and TSuLea-lipids with 5 to 15% incorporation are sufficiently stable for the potential applications in targeted drug delivery.  相似文献   

13.
ZnS semiconductor quantum dots have been synthesized using a method involving melt exchange reaction inside the pores of MCM-41 and subsequent reaction with H(2)S. The ZnS quantum dots-MCM-41 composite, which has been studied with XRD, EDS, and BET techniques, is shown to have retained within the pores the formed quantum dots, with a size distribution exhibiting a maximum nanoparticle diameter of ca. 1.8 nm. The structure and the sorption properties of the ZnS/MCM-41 composite have been studied by means of X-ray diffraction, Fourier transform infrared spectroscopy, and surface area measurements. All experimental data reveal that all the final composite products, containing up to 9.3 wt % ZnS as verified by EDS analysis, keep the basic structural characteristics of MCM-41 materials, without significant reduction of their active surface areas. The quantum dot optical properties have been studied with UV-vis, photoluminescence, and photoluminescence excitation spectroscopies providing evidence for the low-dimensional character of the ZnS semiconductor particles.  相似文献   

14.
We have carried out a series of ab initio calculations to investigate changes in the optical properties of Si quantum dots as a function of surface passivation. In particular, we have compared hydrogen-passivated dots with those having alkyl groups at the surface. We find that, while on clusters with reconstructed surfaces complete alkyl passivation is possible, steric repulsion prevents full passivation of Si dots with unreconstructed surfaces. In addition, our calculations show that steric repulsion may have a dominant effect in determining the surface structure and eventually the stability of alkyl-passivated clusters, with results dependent on the length of the carbon chain. Alkyl passivation weakly affects optical gaps of silicon quantum dots, while it substantially decreases ionization potentials and electron affinities and affects their excited state properties. On the basis of our results, we propose that alkyl-terminated quantum dots may be size selected, taking advantage of the change in ionization potential as a function of the cluster size.  相似文献   

15.
本文用溴钨灯照射含异丙醇、甘氨酸(稳定剂)和硝酸银的水溶液制得非金属银团簇Ag42+(λmax=275nm),其产率随甘氨酸量的增加而增加,并且在空气中甘氨酸可以稳定其数天。对所得结果以及Ag42+在照相潜影形成过程中的可能作用进行了讨论。本文用溴钨灯照射含异丙醇、甘氨酸(稳定剂)和硝酸银的水溶液制得非金属银团簇Ag42+max=275nm),其产率随甘氨酸量的增加而增加,并且在空气中甘氨酸可以稳定其数天。对所得结果以及Ag42+在照相潜影形成过程中的可能作用进行了讨论。  相似文献   

16.
合成了一系列含磁性反离子的非对称双疏水链长的阳离子表面活性剂,其中三氯一溴铁合十六烷基戊基二甲基铵(C_(16)C_5DMA~+[FeCl_3Br]-~)与偶氮羧酸钠盐(AzoNa_4)在酸性条件水溶液中形成磁性囊泡凝胶。运用cryo-透射电镜(TEM)、冷冻蚀刻TEM(FF-TEM)、流变仪、傅里叶变换红外光谱(FT-IR)和超导量子干涉(SQUID)等表征技术对囊泡凝胶进行了结构和性质研究,结果发现:凝胶含有曲率多变的融合性的双层囊泡,这些双分子层结构模构了自然界中各种物象的结构轮廓,展现了不可预测的多变曲率和良好柔性。聚集体双分子层膜内由长短不对称烷基链采取交错相扣的双分子层排列模式,这种构建模式结构稳定,短烷基链可游离出囊泡双分子层并伸向外部水相介质。两个相邻囊泡间的短链在疏水相互作用下形成非共价的囊泡"补丁",疏水的囊泡"补丁"克服相邻囊泡之间的斥力而融合。磁性反离子[FeCl_3Br]~-不仅赋予囊泡磁性,且在囊泡的形成过程中调控烷基链的组装。这种多形态融合性囊泡为揭示膜曲率的调节机制和构建人工细胞提供实验数据和理论参考。  相似文献   

17.
The hypotheses that genotypic differences in salinity tolerance may result from (i) differences in global surface charge density or (ii) from differences in global Ca2+ binding were tested. An attempt was made to correlate the differing salinity tolerance of four melon cultivars with surface properties of vesicles extracted from the plasma membrane (PM) of their root cells. Surface characterization involved measurements of electrophoretic mobility and sorption of 45Ca2+ to the vesicles in the presence of varying concentrations of Ca2+, Na+ and Mg2+. Irrespective of salinity tolerance, vesicles from the four cultivars yielded similar ζ potentials under similar conditions, indicating similar global surface charge densities. Sorption studies with vesicles from two cultivars differing in salinity tolerance predicted independently this result of equal surface charge density. The estimated global binding affinities of Ca2+, Na+ and Mg2+ to the PM of both cultivars were the same with binding coefficients of 50, 0.8 and 9 M−1, respectively. Consequently, the hypotheses enumerated above to interpret genotypic differences in salinity toxicity are rejected. However, vesicles from the salt-resistant strain sorbed 19% more Ca2+ per given amount of protein in the membrane, indicating the existence of a larger number of negatively charged surface sites per given amount of protein and a smaller amount of protein per given area of membrane. Genotypic differences in site-specific Ca2+-binding affinity (e.g. at ion channels) remain a viable hypothesis for genotypic differences in salinity tolerance.  相似文献   

18.
Water-soluble orthorhombic colloidal SnSe quantum dots with an average diameter of 4 nm were successfully prepared by a novel irradiation route using an electronic accelerator as a radiation source and hexadecyl trimethyl ammonium bromide (CTAB) as a surfactant. The quantum dots exhibit a large direct bandgap of 3.89 eV, greatly blue shifted compared with that of bulk SnSe (1.0 eV) due to the quantum confinement effect. The quantum dots show blue photoluminescence at ∼420 nm. The influence of CTAB on the growth of the quantum dots was investigated and a possible reaction/growth mechanism was proposed.  相似文献   

19.
This article describes the first single-vesicle study of proton permeability across the lipid membrane of small (approximately 100 nm) uni- and multilamellar vesicles, which were composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). To follow proton permeation into the internal volume of each vesicle, we encapsulated carboxyfluorescein, a pH-sensitive dye whose fluorescence was quenched in the presence of excess protons. A microfluidic platform was used for easy exchange of high- and low-pH solutions, and fluorescence quenching of single vesicles was detected with single-molecule total internal reflection fluorescence (TIRF) microscopy. Upon solution exchange and acidification of the extravesicular solution (from pH 9 to 3.5), we observed for each vesicle a biphasic decay in fluorescence. Through single-vesicle analysis, we found that rate constants for the first decay followed a Poisson distribution, whereas rate constants for the second decay followed a normal distribution. We propose that proton permeation into each vesicle first arose from formation of transient pores and then transitioned into the second decay phase, which occurred by the solubility-diffusion mechanism. Furthermore, for the bulk population of vesicles, the decay rate constant and vesicle intensity (dependent on size) correlated to give an average permeability coefficient; however, for individual vesicles, we found little correlation, which suggested that proton permeability among single vesicles was heterogeneous in our experiments.  相似文献   

20.
量子点具有独特的光学性质, 在生物医学领域有着广泛的应用. Ag2Te作为Ⅰ-Ⅵ族量子点中的一员, 因具有生物毒性小和带隙窄等优势而备受关注, 但是目前直接合成水溶性Ag2Te量子点的方法较少, 而且可调节的荧光发射波长范围有限. 本文提出了一种合成荧光发射波长位于近红外Ⅱ区窗口的水溶性Ag2Te量子点的新方法. 该方法以硝酸银为银前体, N-乙酰-L-半胱氨酸为配体, 碲前体利用硼氢化钠还原亚碲酸钠得到, 反应条件温和(室温、 大气氛围)且不涉及有毒的有机试剂, 绿色环保. 通过进一步的阳离子处理钝化其表面缺陷, 可以得到尺寸均一的超小粒径水溶性Ag2Te量子点, 量子点的荧光发射波长为1160 nm, 量子产率为8.0% (以IR26染料为参照). 该方法所合成的Ag2Te量子点具有良好的生物相容性, 注入小鼠体内后能观察到明显的近红外荧光, 具有进一步生物应用的潜力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号