首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To tune aggregation/excimer emission and obtain a single active emitter for white polymer light-emitting devices (PLEDs), a heterobimetallic Pt(II)-Ir(III) complex of FIr(pic)-C(6)DBC(6)-(pic)PtF was designed and synthesized, in which C(6)DBC(6) is a di(phenyloxyhexyloxy) bridging group, FIr(pic) is an iridium(III) bis[(4,6-difluorophenyl)pyridinato-N,C(2)'] (picolinate) chromophore and FPt(pic) is a platinum(II) [(4,6-difluorophenyl)pyridinato-N,C(2)'] (picolinate) chromophore. Its physical and opto-electronic properties were investigated. Interestingly, the excimer emission was efficiently controlled by this heterobimetallic Pt(II)-Ir(III) complex compared to the PL profile of the mononuclear FPt(pic) complex in the solid state. Near-white emissions were obtained in the single emissive layer (SEL) PLEDs using this heterobimetallic Pt(II)-Ir(III) complex as a single dopant and poly(vinylcarbazole) as a host matrix at dopant concentrations from 0.5 wt% to 2 wt%. This work indicates that incorporating a non-planar iridium(III) complex into the planar platinum(II) complex can control aggregation/excimer emissions and a single phosphorescent emitter can be obtained to exhibit white emission in SEL devices.  相似文献   

2.
The complexes [Pt(bipy){CC-(4-pyridyl)}(2)] (1) and [Pt(tBu(2)bipy){CC-(4-pyridyl)}(2)] (2) and [Pt(tBu(2)-bipy)(CC-phen)(2)] (3) all contain a Pt(bipy)(diacetylide) core with pendant 4-pyridyl (1 and 2) or phenanthroline (3) units which can be coordinated to {Ln(diketonate)(3)} fragments (Ln = a lanthanide) to make covalently-linked Pt(II)/Ln(III) polynuclear assemblies in which the Pt(II) chromophore, absorbing in the visible region, can be used to sensitise near-infrared luminescence from the Ln(III) centres. For 1 and 2 one-dimensional coordination polymers [1Ln(tta)(3)](infinity) and [2Ln(hfac)(3)](infinity) are formed, whereas 3 forms trinuclear adducts [3{Ln(hfac)(3)}(2)] (tta=anion of thenoyl-trifluoroacetone; hfac=anion of hexafluoroacetylacetone). Complexes 1-3 show typical Pt(II)-based (3)MLCT luminescence in solution at approximately 510 nm, but in the coordination polymers [1Ln(tta)(3)](infinity) and [2Ln(hfac)(3)](infinity) the presence of stacked pairs of Pt(II) units with short PtPt distances means that the chromophores have (3)MMLCT character and emit at lower energy ( approximately 630 nm). Photophysical studies in solution and in the solid state show that the (3)MMLCT luminescence in [1Ln(tta)(3)](infinity) and [2Ln(hfac)(3)](infinity) in the solid state, and the (3)MLCT emission of [3{Ln(hfac)(3)}(2)] in solution and the solid state, is quenched by Pt-->Ln energy transfer when the lanthanide has low-energy f-f excited states which can act as energy acceptors (Ln=Yb, Nd, Er, Pr). This results in sensitised near-infrared luminescence from the Ln(III) units. The extent of quenching of the Pt(II)-based emission, and the Pt-->Ln energy-transfer rates, can vary over a wide range according to how effective each Ln(III) ion is at acting as an energy acceptor, with Yb(III) usually providing the least quenching (slowest Pt-->Ln energy transfer) and either Nd(III) or Er(III) providing the most (fastest Pt-->Ln energy transfer) according to which one has the best overlap of its f-f absorption manifold with the Pt(II)-based luminescence.  相似文献   

3.
In order to make clear the roles of dissolved O2 in the photocatalytic decomposition of organic pollutants and to discriminate different degradation pathways (N-deethylation, chromophore cleavage, and mineralization) during the degradation of dye, the photodegradation of rhodamine B (RhB) has been investigated using vanadate and/or platinum species as electron acceptors in the presence or absence of O2 under visible light irradiation. It was found that with VO2+ as electron acceptor, RhB underwent efficient N-deethylation under visible light irradiation and O2 was found to slow down this process significantly. Little mineralization has been observed in the presence and absence of O2 in VO2+ systems. By contrast, Pt(IV) resulted in the cleavage of conjugated chromophore structure (bleaching) of RhB dye under the otherwise identical conditions. In this case, the presence of O2 did not affect the bleaching rate of the dye, but enhanced greatly the mineralization. Both cleavage of conjugated chromophore structure and N-deethylation occurred simultaneously upon the coaction of VO2+ and Pt(IV) under visible light irradiation. The mineralization yield of the combined system was evidently higher than the expected summation of separate ones. TOC, XPS, and ESR results indicate that in the VO2+ and Pt(IV) combined system VO2+ not only oxidized RhB leading to deethylation but also oxidized the reduced Pt(II) to regenerate Pt(IV) leading to the further cleavage of chromophore structure of RhB, which behaved quite different from the separate ones. A mechanism was also proposed to interpret the different pathways for the oxidative photodecomposition of RhB under visible irradiation.  相似文献   

4.
Pentanuclear linear chain Pt(II,III) complexes [[Pt2(NH3)2X2((CH3)3CCONH)2(CH2COCH3)]2[PtX'4]].nCH3COCH3 (X = X' = Cl, n = 2 (1a), X = Cl, X' = Br, n = 1 (1b), X = Br, X' = Cl, n = 2 (1c), X = X' = Br, n = 1 (1d)) composed of a monomeric Pt(II) complex sandwiched by two amidate-bridged Pt dimers were synthesized from the reaction of the acetonyl dinuclear Pt(III) complexes having equatorial halide ligands [Pt2(NH3)2X2((CH3)3CCONH)2(CH2COCH3)]X' ' (X = Cl (2a), Br (2b), X' ' = NO3-, CH3C6H4SO3-, BF4-, PF6-, ClO4-), with K2[PtX'4] (X' = Cl, Br). The X-ray structures of 1a-1d show that the complexes have metal-metal bonded linear Pt5 structures, and the oxidation state of the metals is approximately Pt(III)-Pt(III)...Pt(II)...Pt(III)-Pt(III). The Pt...Pt interactions between the dimer units and the monomer are due to the induced Pt(II)-Pt(IV) polarization of the Pt(III) dimeric unit caused by the electron withdrawal of the equatorial halide ligands. The density functional theory calculation clearly shows that the Pt...Pt interactions between the dimers and the monomer are made by the electron transfer from the monomer to the dimers. The pentanuclear complexes have flexible Pt backbones with the Pt chain adopting either arch or sigmoid structures depending on the crystal packing.  相似文献   

5.
The synthesis, electrochemistry, and photophysical behavior of a Pt(II) terpyridyl perylenediimide (PDI) acetylide (1) charge-transfer complex is reported. The title compound exhibits strong (ε ≈ 5 × 10(4) M(-1)cm(-1)) low-energy PDI acetylide-based π-π* absorption bands in the visible range extending to 600 nm, producing highly quenched singlet fluorescence (Φ = 0.014 ± 0.001, τ = 109 ps) with respect to a nonmetalated PDI model chromophore. Nanosecond transient absorption spectroscopy revealed the presence of a long excited-state lifetime (372 ns in 2-methyltetrahydrofuran) with transient features consistent with the PDI-acetylide triplet state, ascertained by direct comparison to a model Pt(II) PDI-acetylide complex lacking low-energy charge-transfer transitions. For the first time, time-resolved step-scan FT-IR spectroscopy was used to characterize the triplet excited state of the PDI-acetylide sensitized in the title compound and its associated model complex. The observed red shifts (~30-50 cm(-1)) in the C═O and C≡C vibrations of the two Pt(II) complexes in the long-lived excited state are consistent with formation of the (3)PDI acetylide state and found to be in excellent agreement with the expected change in the relevant DFT-calculated IR frequencies in the nonmetalated PDI model chromophore (ground singlet state and lowest triplet excited state). Formation of the PDI triplet excited state in the title chromophore was also supported by sensitization of the singlet oxygen photoluminescence centered at ~1275 nm in air-saturated acetonitrile solution, Φ((1)O(2)) = 0.52. In terms of light emission, only residual PDI-based red fluorescence could be detected and no corresponding PDI-based phosphorescence was observed in the visible or NIR region at 298 or 77 K in the Pt(II) terpyridyl perylenediimideacetylide.  相似文献   

6.
A number of pivalamidate bridged dinuclear [PtII2(RNH2)4(NHCOtBu)2]2+, [PtIII2LL (RNH2)4(NHCOtBu)2]n+ (2RNH2 = 2NH3, 1,2-ethylenediamine, 1,2-diaminocyclohexane; L, L' = NO3-, H2O, or ketonate), trinuclear [{PtII(dap)(NHCOtBu)2}2PdIII]3+ (dap = 1,2-diaminopropane), tetranuclear [{PtII2(NH3)2(DACH)(NHCOtBu)2}2]4+ (DACH = 1,2-diaminocyclohexane), pentanuclear [{Pt2(C5H7O)(NH3)2Cl2(NHCOtBu)2}2PtCl4], and hexanuclear [Pt2(NH3)2(en)(NHCOtBu)2Pt(NO2)4]2 platinum complexes containing Pt(II)-Pt(II), Pt(II)-Pt(III), Pt(II)-Pd(III), and Pt(III)-Pt(III) interactions have been prepared and structurally characterized. The Pt-Pt interactions are characteristic of covalent, dative, or orbital symmetric Pt-Pt bonds. The dimeric Pt(III) complexes are able to activate C-H bonds of ketones to afford ketonate platinum(III) complexes. The Pt-Pt bonds are either doubly amidate-bridged or ligand unsupported. Their distances are 2.99-3.22 A for Pt(II)-Pt(II), 2.59-2.72 A for Pt(III)-Pt(III), 2.98 A for Pt(II)-Pt(III), and 2.66 A for Pt(II)-Pd(III) bonds depending on the oxidation states of the two metals and the ancillary ligands.  相似文献   

7.
Photoinduced charge separation is a fundamental step in photochemical energy conversion. In the design of molecularly based systems for light-to-chemical energy conversion, this step is studied through the construction of two- and three-component systems (dyads and triads) having suitable electron donor and acceptor moieties placed at specific positions on a charge-transfer chromophore. The most extensively studied chromophores in this regard are ruthenium(II) tris(diimine) systems with a common 3MLCT excited state, as well as related ruthenium(II) bis(terpyridyl) systems. This Forum contribution focuses on dyads and triads of an alternative chromophore, namely, platinum(II) di- and triimine systems having acetylide ligands. These d8 chromophores all possess a 3MLCT excited state in which the lowest unoccupied molecular orbital is a pi orbital on the heterocyclic aromatic ligand. The excited-state energies of these Pt(II) chromophores are generally higher than those found for the ruthenium(II) tris(diimine) systems, and the directionality of the charge transfer is more certain. The first platinum diimine bis(arylacetylide) triad, constructed by attaching phenothiazene donors to the arylacetylide ligands and a nitrophenyl acceptor to 5-ethynylphenanthroline of the chromophore, exhibited a charge-separated state of 75-ns duration. The first Pt(tpy)(arylacetylide)+-based triad contains a trimethoxybenzamide donor and a pyridinium acceptor and has been structurally characterized. The triad has an edge-to-edge separation between donor and acceptor fragments of 27.95 Angstroms. However, while quenching of the emission is complete for this system, transient absorption (TA) studies reveal that charge transfer does not move onto the pyridinium acceptor. A new set of triads described in detail here and having the formula [Pt(NO2phtpy)(p-C triple-bond C-C6H4CH2(PTZ-R)](PF6), where NO2phtpy = 4'-{4-[2-(4-nitrophenyl)vinyl]phenyl}-2,2';6',2'-terpyridine and PTZ = phenothiazine with R = H, OMe, possess an unsaturated linkage between the chromophore and a nitrophenyl acceptor. While the parent chromophore [Pt(ttpy)(C triple-bond CC6H5)]PF6 is brightly luminescent in a fluid solution at 298 K, the triads exhibit complete quenching of the emission, as do the related donor-chromophore (D-C) dyads. Electrochemically, the triads and D-C dyads exhibit a quasi-reversible oxidation wave corresponding to the PTZ ligand, while the R = H triad and related C-A dyad display a facile quasi-reversible reduction assignable to the acceptor. TA spectroscopy shows that one of the triads possesses a long-lived charge-separated state of approximately 230 ns.  相似文献   

8.
Hetero- and homochiral diastereomeric bis(metallahelicene)s have been synthesized. They possess a rare Pt(III)-Pt(III) scaffold bridged by benzoato ligands. It is shown that heterochiral (P,M)-bis(Pt(III)-[6]helicene) can isomerize into the homochiral (P,P)- and (M,M)-bis(Pt(III)-[6]helicene). A theoretical study shows a unique σ-π conjugation between the two π-helices and the σ-Pt(III)-Pt(III) scaffold that impacts the strong chiroptical properties.  相似文献   

9.
The cyanobacterial metabolite anachelin, postulated to serve as a biological ligand to Fe (siderophore), is composed of a fascinating blend of polyketide, peptide, and alkaloid building blocks. In particular, the latter consists of a N,N-dimethyltetrahydroquinolinium fragment, of which the biosynthesis is unknown. To investigate the role of this permanently positively charged fragment, we developed a synthesis of both the anachelin chromophore and its bis-nor derivative lacking the N,N-dimethyl groups starting from suitably protected nitro-DOPA in six and five steps, respectively, and in 50-64% overall yield. Both compounds were then compared for their chemical behavior toward oxidation. It was found that the bis-nor-anachelin chromophore is readily oxidized in solution in the presence of air, with a clear dependence of the rate of oxidation on the pH value. In addition, we could demonstrate that the enzyme tyrosinase, postulated to serve as key catechol oxidase in the biosynthesis of anachelin, also oxidized the bis-nor-hydroquinonamine derivative. Last, Fe(III) was shown to be an effective oxidant for the bis-nor-anachelin chromophore, resulting in all cases in the corresponding aminoquinone. In stark contrast, the anachelin chromophore resisted oxidation under various conditions surveyed (i.e., mediated by air, by tyrosinase, and by Fe(III)). In particular, Fe(III) was readily complexed by the anachelin chromophore, and the resulting complexes were characterized. In conclusion, these experiments demonstrate that the bis-nor-anachelin chromophore is unlikely to serve as cyanobacterial ligand, due to its instability toward oxidation. Moreover, the permanent quaternary ammonium group in anachelin renders the alkaloid chromophore much more stable against oxidation and thus results in its use as ligand for Fe(III).  相似文献   

10.
Pt/Ru deposited on multi-walled carbon nano-tubes (MWCNTs) was prepared with water/iso-propanol solutions containing Pt(IV) and Ru(III) ions by γ-irradiation. The water/iso-propanol ratio (v/v), additive amount of surfactant, the concentration ratio of Pt(IV)/Ru(III) ions and the total absorbed doses (kGy) were evaluated as synthesis parameters. The sample morphology was characterized by SEM and the Pt/Ru atomic ratio was obtained by EDX. It has been found that multi-walled carbon nano-tubes can be well distributed in the water/iso-propanol solution with additive of surfactant. Pt(IV) and Ru(III) ions can be reduced by both of hydrated electron and radical of iso-propanol produced from hydrogen abstraction reaction. The Pt/Ru atom ratio can be controlled by changing the ratio of Pt(IV)/Ru(III). Small nano-particles of Pt/Ru deposited on MWCNTs can be obtained for possible application of electro-catalysts in the proton exchange membrane fuel cells (PEMFC) under optimum conditions with absorbed doses, amount of surfactant, water/iso-propanol ratio and so on. The reduction of Pt(IV)/Ru(III) ions in the aqueous solution with additive of surfactant was also studied by use of pulse radiolysis and the mechanism involved in the reduction process has been proposed.  相似文献   

11.
In Ir(III)/Tb(III) dyads in which the excited state energy of the Ir(III) unit lies above 22,000 cm(-1), visible-light excitation of the Ir(III) chromophore results in sensitised emission from Tb(III) following Ir → Tb energy-transfer.  相似文献   

12.
Reaction of the trinuclear [NBu 4] 2[(R F) 2Pt(mu-PPh 2) 2Pt(mu-PPh 2) 2Pt(R F) 2] ( 1, R F = C 6F 5) with HCl results in the formation of the unusual anionic hexanuclear derivative [NBu 4] 2[{(R F) 2Pt(mu-PPh 2) 2Pt(mu-PPh 2) 2Pt(mu-Cl)} 2] ( 4, 96 e (-) skeleton) through the cleavage of two Pt-C 6F 5 bonds. The reaction of 4 with Tl(acac) yields the trinuclear [NBu 4][(R F) 2Pt(mu-PPh 2) 2Pt(mu-PPh 2) 2Pt(acac)] ( 5, 48 e (-) skeleton), which is oxidized by Ag (+) to form the trinuclear compound [(R F) 2Pt(mu-PPh 2) 2Pt(mu-PPh 2) 2Pt(acac)][ClO 4] ( 6, 46 e (-) skeleton) in mixed oxidation state Pt(III)-Pt(III)-Pt(II), which displays a Pt-Pt bond. The reduction of 6 by [NBu 4][BH 4] gives back 5. The treatment of 6 with Br (-) (1:1 molar ratio) at room temperature gives a mixture of the isomers [(PPh 2R F)(R F)Pt(mu-PPh 2)(mu-Br)Pt(mu-PPh 2) 2Pt(acac)], having Br trans to R F ( 7a) or Br cis to R F ( 7b), which are the result of PPh 2/C 6F 5 reductive coupling. The treatment of 5 with I 2 (1:1 molar ratio) yields the hexanuclear [{(PPh 2R F)(R F)Pt(mu-PPh 2)(mu-I)Pt(mu-PPh 2) 2Pt(mu-I)} 2] ( 8, 96 e (-) skeleton), which is easily transformed into the trinuclear compound [(PPh 2R F)(R F)Pt(mu-PPh 2)(mu-I)Pt(mu-PPh 2) 2Pt(I)(PPh 3)] ( 9, 48 e (-) skeleton). Reaction of [(R F) 2Pt(mu-PPh 2) 2Pt(mu-PPh 2) 2Pt(NCMe) 2] ( 10) with I 2 at 213 K for short reaction times gives the trinuclear platinum derivative [(R F) 2Pt(mu-PPh 2) 2Pt(mu-PPh 2) 2Pt(I) 2] ( 11, 46e skeleton) in mixed oxidation state Pt(III)-Pt(III)-Pt(II) and with a Pt-Pt bond, while the reaction at room temperature and longer reactions times gives 8. The structures of the complexes have been established by multinuclear NMR spectroscopy. In particular, the (195)Pt NMR analysis, carried out also by (19)F- (195)Pt heteronuclear multiple-quantum coherence, revealed an unprecedented shielding of the (195)Pt nuclei upon passing from Pt(II) to Pt(III). The X-ray diffraction structures of complexes 4, 5, 6, 9, and 11 have been studied. A detailed study of the relationship between the complexes has been carried out.  相似文献   

13.
An imidazoline group-containing chelating fiber was prepared by means of the reaction of nitrile groups with ethylenediamine in an hydrazine-modified polyacrylonitrile fiber. The adsorption properties of the chelating fiber for Au(III), Pd(II), Pt(IV), Ir(IV), Os(IV), Rh(III) and Ru(IV) ions, such as binding capacity, distribution coefficient, sorptive rate and quantitative elution of Au(III), Pd(II) and Pt(IV) ions were investigated. The imidazoline group-containing chelating fiber possessed high binding capacities and good adsorption kinetic properties, exhibited high affinity for noble metals in 0.1-1.0 mol/L HCl and could be efficiently re-used. After the separation of trace Au(III), Pd(II) and Pt(IV) ions from a matrix using the chelating fiber, these ions could be determined by ICP-AES with satisfactory results, and the relative standard deviation for Au(III), Pd(II) and Pt(IV) ions was less than 6%.  相似文献   

14.
This is the first report describing the use of picosecond time-resolved infrared (TRIR) spectroscopy to probe a d8 metal chromophore, Pt(4,4'-(CO2Et)(2)-2,2'-bpy)Cl2: monitoring changes in the v(CO) vibrations allows for an assignment of the lowest excited state to an MLCT with an 8.7 ps lifetime.  相似文献   

15.
A series of luminescent platinum(II) terpyridyl acetylide complexes, ([Pt(tpy)(CCPh)]ClO4 (1) and [Pt(ttpy)(CC-p-C6H4R)]ClO4, where tpy=terpyridine, ttpy=4'-p-tolylterpyridine, R=H, Cl, Me) (2-4) were studied with regard to excited-state quenching by dialkylated bipyridinium cations as electron acceptors and triethanolamine (TEOA) as an electron donor and the photogeneration of hydrogen from systems containing the chromophore, the dialkylated bipyridinium cations, TEOA, and colloidal Pt as a catalyst. The dialkylated bipyridinium cations include methyl viologen (MV2+) and a series of diquats prepared from 2,2'-bipyridine or 4,4'-dimethyl-2,2'-bipyridine. The quenching rates for the diquats for one of the chromophores (2) are close to the diffusion-controlled limit. The most effective electron acceptor and relay for hydrogen evolution has been found to be 4,4'-dimethyl-1,1'-trimethylene-2,2'-bipyridinium (DQ4) which on photoreduction by the chromohore provides the strongest reducing agent of the diquats studied. The rate of hydrogen evolution depends in a complex way on the concentration of the bipyridinium electron relay, increasing with concentration at low concentrations and then decreasing at high concentrations. The rate of H2 photogeneration also increases with TEOA concentration at low values and eventually reaches a plateau. The most effective system examined to date consists of the chromophore 2 (2.2x10(-5) M), DQ4 (3.1x10(-4) M), TEOA (2.7x10(-2) M), and Pt colloid (6.0x10(-5) M), and has produced 800 turnovers of H2 (67% yield based on TEOA as sacrificial electron donor) after 20 h of photolysis with lambda>410 nm.  相似文献   

16.
A general route for synthesis of six structurally similar Pt(II) diimine thiolate/phenolates chromophores possessing bulky phenolate or thiolate ligands is reported. The Pt chromophores were characterized using an array of techniques including 1H, 13C, and 195Pt NMR, absorption, emission, (spectro)electrochemistry, and EPR spectroscopy. Systematic variation of the electronic structure of the Pt(II) chromophores studied was achieved by (i) changing solvent polarity; (ii) substituting oxygen for sulfur in the donor ligand; (iii) alternating donor ligands from bis- to di-coordination; and (iv) changing the electron donating/withdrawing properties of the ligand(s). The lowest excited state in these new chromophores was assigned to a [charge-transfer-to-diimine] transition from the HOMO of mixed Pt/S (or Pt/O) character on the basis of absorption and emission spectroscopy, UV/vis (spectro)electrochemistry, and EPR spectroscopy. One of the chromophores, Pt(dpphen)(3,5-di-tert-butyl-catecholate) represents an example of a Pt(II) diimine phenolate chromophore that possesses a reversible oxidation centered predominantly on the donor ligand. Results from EPR spectroscopy indicate participation of the Pt(II) orbitals in the HOMO. There is a dramatic difference in the photophysical properties of carborane complexes compared to other mixed-ligand Pt(II) compounds, which includes room-temperature emission and photostability. The charge-transfer character of the lowest excited state in this series of chromophores is maintained throughout. Moreover, the absorption and emission energies and the redox properties of the excited state can be significantly tuned.  相似文献   

17.
An imidazoline group-containing chelating fiber was prepared by means of the reaction of nitrile groups with ethylenediamine in an hydrazine-modified polyacrylonitrile fiber. The adsorption properties of the chelating fiber for Au(III), Pd(II), Pt(IV), Ir(IV), Os(IV), Rh(III) and Ru(IV) ions, such as binding capacity, distribution coefficient, sorptive rate and quantitative elution of Au(III), Pd(II) and Pt(IV) ions were investigated. The imidazoline group-containing chelating fiber possessed high binding capacities and good adsorption kinetic properties, exhibited high affinity for noble metals in 0.1–1.0 mol/L HCl and could be efficiently re-used. After the separation of trace Au(III), Pd(II) and Pt(IV) ions from a matrix using the chelating fiber, these ions could be determined by ICP-AES with satisfactory results, and the relative standard deviation for Au(III), Pd(II) and Pt(IV) ions was less than 6%. Received: 5 July 1999 / Revised: 4 October 1999 / Accepted: 4 October 1999  相似文献   

18.
Reaction of the trinuclear Pt(III)-Pt(III)-Pt(II) [(C6F5)2Pt(III)(mu-PPh2)2Pt(III)(mu-PPh2)2Pt(C6F5)2] (2) derivative with NBu4Br or NBu4I results in the formation of the trinuclear Pt(II) complexes [NBu4][(PPh2C6F5)(C6F5)Pt(mu-PPh2)(mu-X)Pt(mu-PPh2)2Pt(C6F5)2] [X = I (3), Br (4)] through an intramolecular PPh2/C6F5 reductive coupling and the formation of the phosphine PPh2C6F5. The trinuclear Pt(II) complex [(PPh2C6F5)(C6F5)Pt(mu-PPh2)Pt(mu-PPh2)2Pt(C6F5)2] (5), which displays two Pt-Pt bonds, can be obtained either by halide abstraction in 4 or by refluxing of 2 in CH2Cl2. This latter process also implies an intramolecular PPh2/C6F5 reductive coupling. Treatment of complex 5 with several ligands (Br-, H-, and CO) results in the incorporation of the ligand to the cluster and elimination of one (X = H-) or both (X = Br-, CO) Pt-Pt bonds, forming the trinuclear complexes [NBu4][(PPh2C6F5)(C6F5)Pt(mu-PPh2)(mu-X)Pt(mu-PPh2)2Pt(C6F5)2] [X = Br (6), H (7)] or [(PPh2C6F5)(C6F5)Pt(mu-PPh2)2Pt(mu-PPh2)(CO)Pt(C6F5)2(CO)] (8). The structures of the complexes have been established on the basis of 1H, 19F, and 31P NMR data, and the X-ray structures of the complexes 2, 3, 5, and 7 have been established. The chemical relationship between the different complexes has also been studied.  相似文献   

19.
The anionic chlorocomplexes of Au(III), Pt(IV), Pd(II), Ir(IV), Ir(III) and Rh(III) can be floated from aqueous solutions with cationic surfactants of the type RNR'3Br. The flotation behavior of each metal is reported with respect to variations of hydrochloric acid and sodium chloride concentrations, the R and R' chain lengths, initial surfactant concentrations and initial metal ion concentrations. The flotation behavior of the metals is compared to the anion-exchange selectivity coefficients and a flotation selectivity sequence of Au(III) > Pt(IV), Ir(IV), Pd(II) > Ir(III) > Rh(III) is generally observed. Nearly 100% of Au(III), Pt(IV), Ir(IV) and Pd(II) can be recovered from dilute solutions using the ion flotation procedures.  相似文献   

20.
Reactions of a pivalamidato-bridged head-to-head (HH) platinum(III) binuclear complex with 2-methyl-1,3-butadiene (isoprene) and p-styrenesulfonate and of an α-pyrrolidonato-bridged HH platinum(III) binuclear complex with p-styrenesulfonate were studied kinetically using UV-vis spectrophotometry and (1)H NMR spectroscopy, and detailed reaction mechanisms are proposed. Pt(III) binuclear complexes react with p-styrenesulfonate in four successive steps with mechanisms similar to that for an HH α-pyridonato-bridged Pt(III) binuclear complex with p-styrenesulfonate. In the case of isoprene, four steps were observed on the basis of UV-vis spectrophotometry. However, the reaction kinetics for steps 1 and 2 correspond to those for the previous reaction system, and those for steps 3 and 4 do not correspond to those for the previous system or to those observed by using (1)H NMR spectroscopy for the present isoprene system. By using UV-vis spectrophotometry, it was shown that isoprene preferentially π-coordinates to the Pt(N(2)O(2)) atom via the double bond adjacent to the methyl group in step 1. In step 2, a second isoprene molecule π-coordinates to the Pt(N(4)) atom, which is the rate-determining step, followed by nucleophilic attack of a water molecule on the π-coordinated isoprene on the Pt(N(2)O(2)) atom to form two isomeric σ-complexes. In the same step, π-coordinated isoprene on the Pt(N(4)) atom of the σ-complexes is released. This is different from the reaction of the Pt(III) binuclear complexes with other olefins. In step 3, reductive elimination of the σ-complexes occurs to form two diols and the HH pivalamidato-bridged Pt(II) binuclear complex. Finally, acid decomposition of the Pt(II) binuclear complex occurs to form monomers in step 4. From (1)H NMR spectroscopic observations, fast isomerization between σ-complexes and reductive elimination of the σ-complexes occurs in step 3, and isomerization from a 1,4-diol to a 1,2-diol occurs in step 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号