首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Platinum(II) bi- and terpyridyl chloro complexes, Pt(dcbpy)Cl2 and [Pt(ttpy)Cl]+, where dcbpy = 4,4'-dicarboxyl-2,2'-bipyridine and ttpy = 4-tolyl-2,2':6',2'-terpyridine, are used to investigate the nature of the active catalyst for the photocatalytic production of hydrogen from water. In a Pt(II) chloro system that contains a sacrificial electron donor, either MeOH or triethanolamine (TEOA), and titanium dioxide (TiO2) as an electron relay, sizable amounts of H2 can be observed upon UV bandgap irradiation. The quantity of H2 can be significantly reduced in the presence of mercury under the same conditions. Using a known sensitizer, [Pt(ttpy)(phenylacetylide)]+ (1), combined with a Pt(II) chloro complex in a similar system, there is a substantial induction period until the evolution of H2, under visible light (lambda > 410 nm) irradiation. It is suggested that the Pt(II) chloro complexes are simply acting as precursors to Pt colloids that function as the H2 generating catalyst  相似文献   

2.
Three platinum(II) terpyridylacetylide charge-transfer complexes possessing a lone ancillary ligand systematically varied in phenylacetylide π-conjugation length, [Pt((t)Bu(3)tpy)([C≡CC(6)H(4)](n)H)]ClO(4) (n = 1-3), are evaluated as photosensitizers (PSs) for visible-light-driven (λ > 420 nm) hydrogen production in the presence of a cobaloxime catalyst and the sacrificial electron donor triethanolamine (TEOA). Excited-state reductive quenching of the PS by TEOA produces PS(-) (k(q) scales with the driving force as 1 > 2 > 3), enabling thermal electron transfer to the cobalt catalyst. The initial H(2) evolution is directly proportional to the incident photon flux and visible-light harvesting capacity of the sensitizer, 3 > 2 > 1. The combined data suggest that PSs exhibiting attenuated bimolecular reductive quenching constants with respect to the diffusion limit can overcome this deficiency through improved light absorption in homogeneous H(2)-evolving compositions.  相似文献   

3.
Palladium and platinum complexes with HmtpO (where HmtpO=4,7-dihydro-5-methyl-7-oxo[1,2,4]triazolo[1,5-a]pyrimidine, an analogue of the natural occurring nucleobase hypoxanthine) of the types [M(dmba)(PPh3)(HmtpO)]ClO4[dmba=N,C-chelating 2-(dimethylaminomethyl)phenyl; M=Pd or Pt], [Pd(N-N)(C6F5)(HmtpO)]ClO4[N-N=2,2'-bipyridine (bpy), 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), or N, N, N', N'-tetramethylethylenediamine (tmeda)] and cis-[M(C6F5)2(HmtpO)2] (M=Pd or Pt) (head-to-head atropisomer in the solid state) have been obtained. Pd(II) and Pt(II) complexes with the anion of HmtpO of the types [Pd(tmeda)(C6F5)(mtpO)], [Pd(dmba)(micro-mtpO)] 2, and [NBu4]2[M(C6F5)2(micro-mtpO)]2(M=Pd or Pt) have been prepared starting from the corresponding hydroxometal complexes. Complexes containing simultaneously both the neutral HmtpO ligand and the anionic mtpO of the type [NBu4][M(C6F5)2(HmtpO)(mtpO)] (M=Pd or Pt) have been also obtained. In these mtpO-HmtpO metal complexes, for the first time, prototropic exchange is observed between the two heterocyclic ligands. The crystal structures of [Pd(dmba)(PPh 3)(HmtpO)]+, cis-[Pt(C6F5)2(HmtpO)2].acetone, [Pd(C6F5)(tmeda)(mtpO)].2H2O, [Pd(dmba)(micro-mtpO)]2, [NBu4]2[Pd(C6F5)2(micro-mtpO)]2.CH2Cl2.toluene, [NBu4]2[Pt(C6F5)2(micro-mtpO)](2).0.5(toluene), and [NBu4][Pt(C6F5)2(mtpO)(HmtpO)] have been established by X-ray diffraction. Values of IC50 were calculated for the new platinum complexes cis-[Pt(C6F5)2(HmtpO)2] and [Pt(dmba)(PPh3)(HmtpO)]ClO4 against a panel of human tumor cell lines representative of ovarian (A2780 and A2780 cisR), lung (NCI-H460), and breast cancers (T47D). At 48 h incubation time, both complexes were about 8-fold more active than cisplatin in T47D and show very low resistance factors against an A2780 cell line, which has acquired resistance to cisplatin. The DNA adduct formation of cis-[Pt(C6F5)2(HmtpO)2] and [Pt(dmba)(PPh3)(HmtpO)]ClO4 was followed by circular dichroism and electrophoretic mobility. Atomic force microscopy images of the modifications caused by these platinum complexes on plasmid DNA pB R322 were also obtained.  相似文献   

4.
A series of platinum(II) terpyridyl complexes [Pt(tpy)(C triple bond C-C triple bond CH)]X, 1-X (X=OTf-; PF6-; ClO4-; BF4-; BPh4-); [Pt(tpy)(C triple bond CC6H5)]X, 2-X (X=OTf-; PF6-; ClO4-; BF4-); [Pt(tpy)(C triple bond CC6H4OCH3-4)]OTf, 3-OTf, and [Pt(4'-CH3O-tpy)(C triple bond CC6H5)]OTf, 4-OTf (tpy=2,2':6',2'-terpyridine, OTf=trifluoromethanesulfonate) were synthesized and their photophysical properties determined. Electronic absorption and emission studies showed the formation of a new band upon increasing the diethyl ether content in an acetonitrile/diethyl ether mixture. This was ascribed to the formation of complex aggregates, the solution color of which is dependent on the nature of the anions. This indicates that counter ions play an important role in governing the degree of aggregation and the extent of interactions within these aggregates. Addition of various anions to solutions of 1-OTf and 1-PF6 produced anion-induced color changes upon solvent-induced aggregation, indicating that these complexes may serve as potential colorimetric anion probes.  相似文献   

5.
In the presence of ammonia, the reactions of cyanamide and Cu(II) ions with different organic blocking ligands afford three hydrogencyanamido bridged dinuclear complexes: [(dmbpy)(4)Cu(2)(HNCN)](ClO(4))(3)·H(2)O (1, dmbpy = 4,4'-dimethyl-2,2'-bipyridine), [(phen)(4)Cu(2)(HNCN)](ClO(4))(3)·2H(2)O (2, phen = 1,10-phenanthroline) and [(bpy)(2)Cu(2)(HNCN)(2)(ClO(4))(2)] (3, bpy = 2,2'-bipyridine), respectively. However, using the di(2-pyridyl)ketone (dpk) ligand in similar experimental conditions, an interesting reaction between the hydrogencyanamido anion and dpk is observed. Using Cu(ClO(4))·6H(2)O or Co(ClO(4))·6H(2)O as the metal source, it gives the mixed bridged hexanuclear complex [(dpk·OMe)(4)(dpk·NCN)(2)Cu(6)(H(2)O)(2)](ClO(4))(4) (4), or the mononuclear complex [(dpk·OMe)(dpk·HNCN)Co](ClO(4))·2H(2)O (5), respectively. Their structures are characterized by single crystal X-ray diffraction analyses. Magnetic measurements reveal moderate antiferromagnetic interaction between the Cu(II) ions in complex 1, weak ferromagnetic coupling in complex 2, and strong antiferromagnetic interactions for complexes 3 and 4. The magnetostructural correlations of these complexes are discussed.  相似文献   

6.
Five platinum(II) 1,4,7-trithiacyclononane (ttcn) complexes with bidentate-substituted 2,2'-bipyridine ligands have been prepared and structurally characterized: [Pt(bpy)(ttcn)](PF6)2 (bpy = 2,2'-bipyridine), triclinic, P1, a = 10.2529(3) A, b = 10.7791(3) A, c = 10.7867(3) A, alpha = 83.886(1) degrees, beta = 87.565(1) degrees, gamma = 84.901(1), V = 1179.99(6) A3, Z = 2; [Pt(4,4'-dmbpy)(ttcn)](PF6)2 x CH3CN x H2O (4,4'-dmbpy = 4,4'-dimethyl-2,2'-bipyridine), triclinic, P1, a = 10.1895(3) A, b = 11.8566(4) A, c = 13.1004(4) A, alpha = 77.345(1) degrees, beta = 79.967(1) degrees, gamma = 72.341(1) degrees, V = 1461.56(8) A3, Z = 2; [Pt(5,5'-dmbpy)(ttcn)](PF6)2 (5,5'-dmbpy = 5,5'-dimethyl-2,2'-bipyridine), triclinic, P1, a = 10.6397(4) A, b = 10.8449(4) A, c = 11.2621(4) A, alpha = 90.035(1) degrees, beta = 98.061(1) degrees, gamma = 91.283(1) degrees, V = 1286.32(8) A3, Z = 2; [Pt(dbbpy)(ttcn)](PF6)2 x CH3NO2 (dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine), triclinic, P1, a = 11.5422(7) A, b = 11.6100(7) A, c = 13.6052(9) A, alpha = 85.902(1) degrees, beta = 89.675(1) degrees, gamma = 74.942(1) degrees, V = 1755.90(19) A3, Z = 2; and [Pt(dtfmbpy)(ttcn)](PF6)2 x CH3CN (dtfmbpy = 5,5'-di-trifluoromethyl-2,2'-bipyridine): monoclinic, P2(1)/c, a = 13.1187(9) A, b = 20.9031(15) A, c = 11.3815(8) A, beta = 105.789(2) degrees, V = 3003.3(4) A3, Z = 4. For each salt, the platinum(II) center of the cation is bonded to two nitrogen atoms of the chelating diimine and two sulfur atoms of the thioether macrocycle. The third sulfur atom of ttcn forms a long apical interaction with the metal center (2.84-2.97 A), resulting in a flattened square pyramid structure. An examination of these and 17 other structures of platinum(II) ttcn complexes reveals a correlation between the apical Pt...S distance and the donor properties of the ancillary ligands, suggesting a means for using variations in ligand electronic properties to tune molecular structure. The room-temperature absorption spectra in acetonitrile solution show a broad and comparatively low-energy MLCT band maximizing near approximately 390 nm for the bpy and dialkyl-substituted bipyridyl derivatives. The maximum is dramatically red-shifted to 460 nm in the spectrum of the dtfmbpy complex as a result of the electron-withdrawing properties of the -CF(3) groups. The 3:1 EtOH/MeOH 77 K glassy solution emission spectra exhibit low-energy emission bands (lambdamax, 570-645 nm), tentatively assigned as originating from a lowest, predominantly spin-forbidden MLCT excited state that is stabilized by apical Pt...S interactions.  相似文献   

7.
Neutral ruthenium(II) complexes [RuLL'(CN)2] (L, L' = bpy, dmb, dbb; bpy = 2,2'-bipyridine, dmb = 4,4'-dimethyl-2,2'-bipyridine, dbb = 4,4'-tert-butyl-2,2'-bipyridine) were prepared, and the luminescence characteristics of the complexes in the solid state were measured. The luminescence was tuned by crystal waters included in the crystals; for example, [Ru(dbb)2(CN)2] x 2H2O, [Ru(dbb)2(CN)2] x H2O, and [Ru(dbb)2(CN)2] emit luminescence at 640, 685, and 740 nm, respectively.  相似文献   

8.
Ternary copper(II) complexes involving polypyridyl ligands in the coordination sphere of composition [Cu(tpy)(phen)](ClO4)2 (1), [Cu(tpy)(bipy)](ClO4)2 (2), [Cu(tptz)(phen)](ClO4)2 (3) and [Cu(tptz)(bipy)](BF4)2 (4) where tpy = 2,2':6',2'-terpyridine, tptz = 2,4,6-tri(2-pyridyl)-1,3,5-triazine, phen = 1,10-phenanthroline and bipy = 2,2'-bipyridine have been synthesized and characterized by elemental analysis, magnetic susceptibility, X-band e.p.r. spectroscopy and electronic spectroscopy. Single crystal X-ray of (1) has revealed the presence of a distorted square pyramidal geometry in the complex. Magnetic susceptibility measurements at room temperature were in the range of 1.77-1.81 BM. SOD and antimicrobial activities of these complexes were also measured. Crystal data of (1): P-1, a = 9.3010(7) A, b = 9.7900(6) A, c = 16.4620(6) A, Vc = 1342.73(14) A3, Z = 4. The bond distance of CuN in square base is 2+/-0.04 A.  相似文献   

9.
Pt(pipNC)(2)(phen) [pipNC(-) = 1-(piperidylmethyl)phenyl anion; phen = 1,10-phenanthroline] was prepared by the reaction of cis-Pt(pipNC)(2) with phen. Crystallographic and (1)H NMR data establish that the phen ligand is bidentate, whereas each piperidyl ligand is monodentate and bonded to the platinum at the ortho position of the phenyl group. Acidic conditions allowed for isolation of the salts of diprotonated Pt(pipNHC)(2)(diimine)(2+) adducts (diimine = phen, 2,2'-bipyridine, or 5,5'-ditrifluoromethyl-2,2'-bipyridine). Crystallographic and spectroscopic data for the diprotonated complexes are consistent with H···Pt interactions (2.32-2.51 ?) involving the piperidinium groups, suggesting that the metal center behaves as a Br?nsted base. Metal-to-ligand (diimine) charge-transfer states of Pt(pipNHC)(2)(phen)(2+) in solution are strongly destabilized (>2500 cm(-1)) relative to Pt(pipNC)(2)(phen), in keeping with the notion that NH···Pt interactions effectively reduce the electron density at the metal center. Though N···Pt interactions in Pt(pipNC)(2)(phen) appear to be weaker than those found for outer-sphere two-electron reagents, such as Pt(pip(2)NCN)(tpy)(+) [pip(2)NCN(-) = 1,3-bis(piperidylmethylphenyl anion; tpy = 2,2':6',2'-terpyridine], each of the Pt(pipNC)(2)(diimine) complexes undergoes diimine ligand dissociation to give back cis-Pt(pipNC)(2) and free diimine ligand. Electrochemical measurements on the deprotonated complexes suggest that the piperidyl groups help to stabilize higher oxidation states of the metal center, whereas protonation of the piperidyl groups has a destabilizing influence.  相似文献   

10.
A series of polypyridyl ruthenium complexes of the general formula [Ru(tpy)(bpy')Cl]+ where tpy is 2,2':6',2"-terpyridine and bpy' is 4-carboxy-4'-methyl-2,2'-bipyridine (4-CO2H-4'-Mebpy), a proline derviative (4-CO-Pra-(Boc)(OMe)-4'-Mebpy), or 4-((diethoxyphosphinyl)methyl)-4'-methyl-2,2'-bipyridine (4-CH2PO3Et2-4'-Mebpy) are prepared. For each complex, two isomers exist, and these are separated chromatographically. The structure of the hexafluorophosphate salt of cis-[Ru(tpy)(4-CO2H-4'-Mebpy)Cl]+, cis-1, is determined by X-ray crystallography. The salt crystallizes in the monoclinic space group Cc with a = 12.4778(6) A, b = 12.6086(6) A, c = 20.1215(9) A, beta = 107.08200(1) degrees, Z = 4, R = 0.058, and Rw = 0.072. The structures of the remaining complexes are assigned by 1H NMR comparisons with cis-1. The complexes are potentially important precursors for the incorporation of RuIV=O2+ oxidants into polymers or peptides or for their adsorption onto oxide surfaces. Preliminary electrochemical results for the isomers of [Ru(tpy)(4-CH2PO3H2-4'-Mebpy)(H2O)]2+, 4, adsorbed on ITO (In2O3:Sn) surfaces add support to a recently proposed electron-transfer mechanism involving cross-surface proton-coupled electron transfer.  相似文献   

11.
1H, 13C and 15N NMR studies of platinide(II) (M=Pd, Pt) chloride complexes with methyl and phenyl derivatives of 2,2'-bipyridine and 1,10-phenanthroline [LL=4,4'-dimethyl-2,2'-bipyridine (dmbpy); 4,4'-diphenyl-2,2'-bipyridine (dpbpy); 4,7-dimethyl-1,10-phenanthroline (dmphen); 4,7-diphenyl-1,10-phenanthroline (dpphen)] having a general [M(LL)Cl2] formula were performed and the respective chemical shifts (delta1H, delta13C, delta15N) reported. 1H high-frequency coordination shifts (Delta1Hcoord=delta1Hcomplex-delta1Hligand) were discussed in relation to the changes of diamagnetic contribution in the relevant 1H shielding constants. The comparison to literature data for similar [M(LL)(XX)], [M(LL)X2] and [M(LL)XY] coordination or organometallic compounds containing various auxiliary ligands revealed a large dependence of delta1H parameters on inductive and anisotropic effects. 15N low-frequency coordination shifts (Delta15Ncoord=delta 15Ncomplex-delta15Nligand) of ca 88-96 ppm for M=Pd and ca 103-111 ppm for M=Pt were attributed to both the decrease of the absolute value of paramagnetic contribution and the increase of the diamagnetic term in the expression for 15N shielding constants. The absolute magnitude of Delta15Ncoord parameter increased by ca 15 ppm upon Pd(II)-->Pt(II) transition and by ca 6-7 ppm following dmbpy-->dmphen or dpbpy-->dpphen ligand replacement; variations between analogous complexes containing methyl and phenyl ligands (dmbpy vs dpbpy; dmphen vs dpphen) did not exceed+/-1.5 ppm. Experimental 1H, 13C, 15N NMR chemical shifts were compared to those quantum-chemically calculated by B3LYP/LanL2DZ+6-31G**//B3LYP/LanL2DZ+6-31G*, both in vacuo and in DMSO or DMF solution.  相似文献   

12.
A new terpyridyl-containing Pt triad [Pt(pytpy)(p-CC-C6H4-NH-CO-C6H2(OMe)3)](PF6)2 (4), where pytpy = 4'-(4-pyridin-1-ylmethylphenyl)-[2,2';6',2' ']terpyridine and p-CC-C6H4-NH-CO-C6H2(OMe)3 = N-(4-ethynylphenyl)-3,4,5-trimethoxybenzamide, has been synthesized and structurally characterized. The related donor-chromophore dyad [Pt(ttpy)(p-CC-C6H4-NH-CO-C6H2(OMe)3)]PF6 2, where ttpy = 4'-p-tolyl-[2,2';6',2' ']terpyridine, and the chromophore-acceptor dyad [Pt(pytpy)(CCC6H5)](PF6)2 (3), where CCC6H5 = ethynylbenzene, have also been studied. The multistep syntheses culminate with a CuI-catalyzed coupling reaction of the respective acetylene with either [Pt(ttpy)Cl]PF6 or [Pt(pytpy)Cl](PF6)2. X-ray and spectroscopic studies support assignment of a distorted square planar environment around the Pt(II) ion with three of its coordination sites occupied by the terpyridyl N-donors and the fourth coordination site occupied by the acetylenic carbon. Although the parent compound [Pt(ttpy)(CCC6H5)]PF6 (1) is brightly luminescent in fluid solution at 298 K, dyad 2 as well as triad 4 exhibit complete quenching of the emission. The chromophore-acceptor (C-A) dyad 3 displays weak solution luminescence at room temperature with a phi(rel)(em) of 0.011 (using Ru(bpy)3(2+) as a standard with phi(rel)(em) = 0.062). Electrochemically, the donor-chromophore (D-C) dyad and the donor-chromophore-acceptor (D-C-A) triad exhibit both metal-based and donor ligand-based oxidations, whereas the triad and the C-A dyad show the expected pyridinium- and terpyridine-based reductions. Transient absorption studies of the dyad and triad systems indicate that although the trimethoxybenzene group acts as a reductive donor, in the present system, the pyridinium group fails to act as an acceptor.  相似文献   

13.
Pd(II) and Pt(II) complexes with the anions of the model nucleobases 1-methylthymine (1-MethyH), 1-methyluracil (1-MeuraH), and 1-methylcytosine (1-MecytH) of the types [Pd(dmba)(mu-L)]2 [dmba = N,C-chelating 2-((dimethylamino)methyl)phenyl; L = 1-Methy, 1-Meura or 1-Mecyt] and [M(dmba)(L)(L')] [L = 1-Methy or 1-Meura; L' = PPh(3) (M = Pd or Pt), DMSO (M = Pt)] have been obtained. Palladium complexes of the types [Pd(C6F5)(N-N)(L)] [L = 1-Methy or 1-Meura; N-N = N,N,N',N'-tetramethylethylenediamine (tmeda), 2,2'-bipyridine (bpy), or 4,4'-dimethyl-2,2'-bipyridine (Me2bpy)] and [NBu4][Pd(C6F5)(1-Methy)2(H2O)] have also been prepared. The crystal structures of [Pd(dmba)(mu-1-Methy)]2, [Pd(dmba)(mu-1-Mecyt)]2.2CHCl3, [Pd(dmba)(1-Methy)(PPh3)].3CHCl3, [Pt(dmba)(1-Methy)(PPh3)], [Pd(tmeda)(C6F5)(1-Methy)], and [NBu4][Pd(C6F5)(1-Methy)2(H2O)].H2O have been established by X-ray diffraction. The DNA adduct formation of the new platinum complexes synthesized was followed by circular dichroism and electrophoretic mobility. Atomic force microscopy images of the modifications caused by the platinum complexes on plasmid DNA pBR322 were also obtained. Values of IC50 were also calculated for the new platinum complexes against the tumor cell line HL-60. All the new platinum complexes were more active than cisplatin (up to 20-fold in some cases).  相似文献   

14.
Four new 2,2'-bipyridine and 1,10-phenanthroline complexes, namely [Mn(phenca)(2)]·(H(2)O)(2) (1), [Cu(4)(phen)(4)(OH-)(4)(H(2)O)(2)](DMF)(4)(ClO(4)-)(4)(H(2)O) (2), [Cu(2)(2,2-bipy)(2)(C(2)O(4)2-)(H(2)O)(2)(NO(3))(2)] (3) and [Cu(2,2-bipy)(2)(ClO(4)-)](ClO(4)-) (4) (2,2'-bpy = 2,2'-bipyridine, Hphenca = 1,10-phenanthroline-2-carboxylic acid) have been synthesized by a hydrothermal reaction. The products were characterized by elemental analysis, infrared spectroscopy and X-ray crystal diffraction. While strong hydrogen bonds play central roles in the formation of the 3D structure, the combined influence of the weak interactions such as π···π interactions is also evident in the structures. A preliminary investigation on the ion exchange properties of the complexes is presented.  相似文献   

15.
Substitution reactions of the complexes [Pt(terpy)(H(2)O)](2+), [Pt(terpy)(cyst-S)](2+) and [Pt(terpy)(guo-N(7))](2+), where terpy = 2,2':6',2"-terpyridine, cyst = L-cysteine and guo = guanosine, with some biologically relevant ligands such as inosine (INO), inosine-5'-monophosphate (5'-IMP), guanosine-5'-monophosphate (5'-GMP), l-cysteine, glutathione, thiourea, thiosulfate and diethyldithiocarbamate (DEDTC), were studied in aqueous 0.10 M NaClO(4) at pH 2.5 and 6.0 using variable-temperature and -pressure stopped-flow spectrophotometry. The reactions of [Pt(terpy)(H(2)O)](2+) with INO, 5'-IMP and 5'-GMP showed that these ligands are very good nucleophiles. The second order rate constants varied between 4 x 10(2) and 6 x 10(2) M(-1) s(-1) at 25 degree C. The [Pt(terpy)(cyst-S)](2+) complex is unreactive towards nitrogen donor nucleophiles, and cysteine cannot be replaced by N(7) from INO, 5'-IMP and 5'-GMP. However, sulfur donor nucleophiles such as thiourea, thiosulfate and diethyldithiocarbamate could displace the Pt-cysteine bond. Diethyldithiocarbamate is the best nucleophile and the order of reactivity is: thiourea < thiosulfate < DEDTC with rate constants of 0.936 +/- 0.002, 5.99 +/- 0.02 and 8.88 +/- 0.07 M(-1) s(-1) at 25 degree C, respectively. The reactions of [Pt(terpy)(guo-N(7))](2+) with sulfur donor ligands showed that these nucleophiles could substitute guanosine from the Pt(ii) complex, of which diethyldithiocarbamate and thiosulfate are the strongest nucleophiles. The tripeptide glutathione is also a very efficient nucleophile. Activation parameters (Delta H(++), Delta S(++) and Delta V(++)) were determined for all reactions. The crystal structures of [Pt(terpy)(cyst-S)](ClO(4))(2).0.5H(2)O and [Pt(terpy)(guo-N(7))](ClO(4))(2).0.5guo.1.5H(2)O were determined by X-ray diffraction. Crystals of [Pt(terpy)(cyst-S)](ClO(4))(2).0.5H(2)O are orthorhombic with the space group P2(1)2(1)2(1), whereas [Pt(terpy)(guo-N(7))](ClO(4))(2).0.5guo.1.5H(2)O crystallizes in the orthorhombic space group P2(1)2(1)2. A typical feature of terpyridine complexes can be found in both molecular structures: the Pt-N (central) bond distance, 1.982(7) and 1.92(2) A, respectively, is shorter than the other two Pt-N distances, being 2.043(7) and 2.034(7) A in [Pt(terpy)(cyst-S)](ClO(4))(2).0.5H(2)O and 2.03(2) and 2.04(2) A in [Pt(terpy)(guo-N(7))](ClO(4))(2).0.5guo.1.5H(2)O, respectively. In both crystal structures two symmetrically independent cations representing different conformers are present in the asymmetric unit. The results are analysed in reference to the antitumour activity of Pt(II) complexes, and the importance of the rescue agents are discussed.  相似文献   

16.
In this study we report on the photophysical properties of some [RuL(CN)4](2-) complex ions where L = 2,2'-bipyridine (bpy), 5,5'-dimethyl-2,2'-bipyridine (dmb), 1,10-phenanthroline (phen), 1-ethyl-2-(2-pyridyl)benzimidazole (pbe), 2,2':6',2'-terpyridine (tpy) and [RuL3](2+) where L = bpy or phen. Measurements were carried out in H2O and D2O. The effect of the deuterium isotope effect on the lifetime of these complexes is discussed. It has also been found that the presence of cyano groups has a pronounced effect on the lifetime of the excited metal-to-ligand charge transfer ((3)MLCT) of these complexes. Quenching of the (3)MLCT states by oxygen is reported in H2O and D2O. The rate constants, k(q), for quenching of the (3)MLCT states of these ruthenium complex ions by molecular oxygen are in the range (2.55 to 7.01) x 10(9) M(-1) s(-1) in H2O and (3.38 to 5.69) x 10(9) M(-1) s(-1) in D2O. The efficiency of singlet oxygen, O2((1)Delta(g)), production as a result of the (3)MLCT quenching by oxygen, f(Delta)(T), is reported in D2O and found to be in the range 0.29-0.52. The rate constants, k(q)(Delta), for quenching of singlet oxygen by ground state sensitizers in D2O is also reported and found to be in the range (0.15 to 3.46) x 10(7) M(-1) s(-1). The rate constants and the efficiency of singlet oxygen formation are quantitatively reproduced by a model that assumes the competition of a non-charge transfer (nCT) and a CT deactivation channel. nCT deactivation occurs from a fully established spin-statistical equilibrium of (1)(T1(3)Sigma) and (3)(T1(3)Sigma) encounter complexes by internal conversion (IC) to lower excited complexes that dissociate to yield O2((1)Delta(g)), and O2((3)Sigmag-). The balance between CT and nCT deactivation channels which is described by the relative contribution p(CT) of CT induced deactivation is discussed. The kinetic model proposed for the quenching of pi-pi* triplet states by oxygen can also be applied to the quenching of (3)MLCT states by oxygen.  相似文献   

17.
We describe the synthesis and characterization of 4'-tert-butyl-2,2':6',2'-terpyridine (4'-(t)Butpy, 1), a convergent tpy ligand that exhibits both a sterically demanding and solubilizing 4'-substituent. In the solid state, molecules of 1 pack with alternating tpy and tert-butyl domains, and the bulky alkyl substituents prevent the molecules from engaging in the face-to-face π-interactions which are typical of simple tpy ligands. Instead, the predominant packing forces involve CH···N hydrogen bonds and weak CH···π contacts. The syntheses of the homoleptic complexes [M(1)(2)][PF(6)](2) (M = Fe, Co, Zn and Ru) and the heteroleptic [Ru(tpy)(1)][PF(6)](2) are described. The complexes have been fully characterized in solution, including the (1)H NMR spectroscopic characterization of the paramagnetic [Co(1)(2)][PF(6)](2). Cyclic voltammetric data are consistent with the tert-butyl substituent being slightly electron releasing. The single crystal structures of [Zn(1)(2)][PF(6)](2) and [Ru(1)(2)][PF(6)](2) have been determined; the compounds are essentially isomorphous. The packing of the cations is such that the tert-butyl substituents are accommodated in pockets between the tpy domains of adjacent cations, and as a consequence, the {M(tpy)(2)}-embrace that is a ubiquitous feature of many related structures is not observed.  相似文献   

18.
A series of novel emissive Ir(III) complexes having the coordination environments of [Ir(N--N--N)2]3+, [Ir(N--N--N)(N--N)Cl]2+, and [Ir(N--N--N)(N--C--N)]2+ with 2,6-bis(1-methyl-benzimidazol-2-yl)pyridine (L1, N--N--N), 1,3-bis(1-methyl-benzimidazol-2-yl)benzene (L2H, N--C--N), 4'-(4-methylphenyl)-2,2':6',2' '-terpyridine (ttpy, N--N--N), and 2,2'-bipyridine (bpy, N--N) have been synthesized and their photophysical and electrochemical properties studied. The Ir(III) complexes exhibited phosphorescent emissions in the 500-600 nm region, with lifetimes ranging from approximately 1-10 micros at 295 K. Analysis of the 0-0 energies and the redox potentials indicated that the lowest excited state of [Ir(L1)(L2)]2+ possessed the highest contribution of 3MLCT (MLCT = metal-to-ligand charge transfer) among the Ir(III) complexes, reflecting the sigma-donating ability of the tridentate ligand, ttpy < L1 < L2. The emission quantum yields (phi) of the Ir(III) complexes ranged from 0.037 to 0.19, and the highest phi value (0.19) was obtained for [Ir(L1)(bpy)Cl]2+. Radiative rate constants (k(r)) were 1.2 x 10(4) s(-1) for [Ir(ttpy)2]3+, 3.7 x 10(4) s(-1) for [Ir(L1)(bpy)Cl]2+, 3.8 x 10(4) s(-1) for [Ir(ttpy)(bpy)Cl]2+, 3.9 x 10(4) s(-1) for [Ir(L1)2]3+, and 6.6 x 10(4) s(-1) for [Ir(L1)(L2)]2+. The highest radiative rate for [Ir(L1)(L2)]2+ with the highest contribution of 3MLCT could be explained in terms of the singlet-triplet mixing induced by spin-orbit coupling of 5d electrons in the MLCT electronic configurations.  相似文献   

19.
The complex [Co(dmgH)2pyCl]2+ (1, dmgH = dimethylglyoximate, py = pridine) has been used as a molecular catalyst for visible light driven hydrogen production in the presence of [Pt(tolylterpyridine)(phenylacetylide)]+ (3) as a photosensitizer and triethanolamine (TEOA) as a sacrificial reducing agent. Complex 3 is quenched oxidatively by [Co(dmgH)pyCl]2+ (1) with a rate constant kq of 1.27 x 10(9) M(-1) s(-1). Photogeneration of H2 is only seen when 1 + 3 + TEOA are all present. H2 production is maximized for this system at pH 8.5 and declines to very low levels at pH < 7 and pH > 12. Irradiation of the reaction solution initially containing 1.61 x 10(-2) M TEOA, 1.11 x 10(-5) M of 3, and 1.99 x 10(-4) M of Co catalyst 1 in MeCN/water (3:2 v/v) at pH = 8.5 for 10 h with lambda > 410 nm yields 400 turnovers of H2. When TEOA is 0.27 M, approximately 1000 turnovers are obtained after 10 h of irradiation. Spectroscopic study of the photolyses solutions suggests that H2 formation proceeds via Co(I) and protonation to form Co(III) hydride species.  相似文献   

20.
本文用2-咪唑乙酸(Hiaa),2,2′-联吡啶,氢氧化钠和六水合高氯酸锰在水和乙醇中反应合成了1个二维配位化合物{[Mn(iaa)(2,2′-bipyridine)(H2O)](ClO4)}n (1)。单晶结构表明化合物1是1个新颖的二维双核锰配位聚合物,锰离子的配位构型为扭曲的八面体。每一个锰离子与3个配体配位,而每个配体与3个锰离子桥连。磁性研究表明1中Mn(Ⅱ)离子间存在弱的反  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号