首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zirconia thin films were deposited by OMCVD (organo-metallic chemical vapour deposition) at various temperatures and oxygen partial pressures on a AISI 301 stainless steel substrate with Zr(thd)4 as precursor. The as deposited 250 nm thin zirconia films presented a structure consisting of two phases: the expected monoclinic one and also an unexpected tetragonal phase. According to the literature, the stabilization of the tetragonal phase (metastable in massive zirconia) can be related to the crystallite size and/or to the generated internal compressive stresses.To analyze the effect of internal and external stresses on the thin film behaviour, in-situ tensile experiments were performed at room temperature and at high temperature (500 °C).Depending on the process parameters, phase transformations and damage evolution of the films were observed. Our results, associated to XRD (X-ray diffraction) analyses, used to determine phase ratios and residual stresses within the films, before and after the mechanical experiments, are discussed with respect to their microstructural changes.  相似文献   

2.
Zirconia thin layers (250 nm) were deposited on stainless steel substrates using organo-metallic injection chemical vapour deposition (MOCVD) process with zirconium beta-diketonate as precursor at low oxygen pressure and 900 °C. Low roughness zirconia films were made up of a mixture of tetragonal and monoclinic phases depending on the process conditions. As the zirconia tetragonal phase is known to be stabilized by small grain size and/or internal compressive stresses, tensile and/or compressive external stress fields were applied at room temperature using a bending test device. Then, XRD measurements were used to determine tetragonal/monoclinic phase ratio and also residual stresses in the films before and after the tests. The film surface was observed at the various stages of the experiments by field electron gun-scanning electron microscopy (FEG-SEM).Under these stress fields, phase transformation occurs in the film, from tetragonal structure to a monoclinic one. Some preferential tetragonal planes give rise to monoclinic ones. The external stress field is also likely to redistribute the internal stresses within the films.  相似文献   

3.
The synthesis of thin films of zirconia often produces tetragonal or cubic phases, which are stable at high temperatures, but that can be transformed into the monoclinic form by cooling. In the present study, we report the deposition of thin zirconium dioxide films by metalorganic chemical vapor deposition using zirconium (IV)-acetylacetonate as precursor. Colorless, porous, homogeneous and well adherent ZrO2 thin films in the cubic phase were obtained within the temperature range going from 873 to 973 K. The deposits presented a preferential orientation towards the (1 1 1) and (2 2 0) planes as the substrate temperature was increased, and a crystal size ranging between 20 and 25 nm. The kinetics is believed to result from film growth involving the deposition and aggregation of nanosized primary particles produced during the CVD process. A mismatch between the experimental results obtained here and the thermodynamic prediction was found, which can be associated with the intrinsic nature of the nanostructured materials, which present a high density of interfaces.  相似文献   

4.
Tungsten trioxide and titanium dioxide thin films were synthesised by pulsed laser deposition. We used for irradiations of oxide targets an UV KrF* (λ = 248 nm, τFWHM ≅ 20 ns, ν = 2 Hz) excimer laser source, at 2 J/cm2 incident fluence value. The experiments were performed in low oxygen pressure. The (0 0 1) SiO2 substrates were heated during the thin film deposition process at temperature values within the 300-500 °C range. The structure and crystalline status of the obtained oxide thin films were investigated by high resolution transmission electron microscopy. Our analyses show that the films are composed by nanoparticles with average diameters from a few to a few tens of nm. Moreover, the films deposited at substrate temperatures higher than 300 °C are crystalline. The tungsten trioxide films consist of a mixture of triclinic and monoclinic phases, while the titanium dioxide films structure corresponds to the tetragonal anatase phase. The oxide films average transmittance in the visible-infrared spectral range is higher than 80%, which makes them suitable for sensor applications.  相似文献   

5.
ZrO2 thin films were deposited at various oxygen partial pressures (2.0 × 10−5-3.5 × 10−1 mbar) at 973 K on (1 0 0) silicon and quartz substrates by pulsed laser deposition. The influence of oxygen partial pressure on structure, surface morphology and optical properties of the films were investigated. X-ray diffraction results indicated that the films are polycrystalline containing both monoclinic and tetragonal phases. The films prepared in the oxygen partial pressures range 2.0 × 10−5-3.5 × 10−1 mbar contain nanocrystals of sizes in the range 54-31 nm for tetragonal phase. The peak intensity of the tetragonal phase decreases with the increase of oxygen partial pressures. Surface morphology of the films examined by AFM shows the formation of nanostructures. The RMS surface roughness of the film prepared at 2.0 × 10−5 mbar is 1.3 nm while it is 3.2 nm at 3.5 × 10−1 mbar. The optical properties of the films were investigated using UV-visible spectroscopy technique in the wavelength range of 200-800 nm. The refractive index is found to decrease from 2.26 to 1.87 as the oxygen partial pressure increases from 2.0 × 10−5 to 3.5 × 10−1 mbar. The optical studies show two different absorption edges corresponding to monoclinic and tetragonal phases.  相似文献   

6.
Highly transparent nanocrystalline zirconia thin films were prepared by the sol-gel dip coating technique. XRD pattern of ZrO2 thin film annealed at 400 °C shows the formation of tetragonal phase with a particle size of 13.6 nm. FT-IR spectra reveal the formation of Zr-O-Zr and the reduction of OH and other functional groups as the temperature increases. The transmittance spectra give an average transmittance greater than 80% in the film of thickness 262 nm. Photoluminescence (PL) spectra give intense band at 391 nm and a broad band centered at 300 nm. The increase of PL intensity with elevation of annealing temperature is related to reduction of OH groups, increase in the crystallinity and reduction in the non-radiative related defects. The luminescence dependence on defects in the film makes it suitable for luminescent oxygen-sensor development. The “Red shift” of excitation peak is related to an increase in the oxygen content of films with annealing temperature. The “Blue shift” of PL spectra originates from the change of stress of the film due to lattice distortion. The defect states in the nanocrystalline zirconia thin films play an important role in the energy transfer process.  相似文献   

7.
The effects of W doping on the characteristical properties of SnO2 thin films prepared by sol–gel spin coating method were investigated. The SnO2 thin films were deposited at various W doping ratios and characterized by various measurements. XRD studies indicated that the undoped and W doped SnO2 films had cubic and tetragonal phases. The SEM images of WTO thin films showed cubic shaped nanocubes corresponding to cubic phase and the smaller particles corresponding to tetragonal phase were formed on the film surfaces, and their distributions and sizes were dependent on the W doping ratio. EDX spectroscopy analyses showed that the calculated and participated atomic ratios of W/(W + Sn) (at.%) in the starting solution and in the WTO thin films were almost close. It was found that the sheet resistance depended on W doping ratio and 2.0 at.% W doped SnO2 (WTO) exhibited lowest value of sheet resistance (7.11 × 103 Ω/cm2).  相似文献   

8.
Raman scattering and synchrotron X-ray diffraction have been used to investigate the high-pressure behavior of l-alanine. This study has confirmed a structural phase transition observed by Raman scattering at 2.3 GPa and identified it as a change from orthorhombic to tetragonal structure. Another phase transformation from tetragonal to monoclinic structure has been observed at about 9 GPa. From the equation of state, the zero-pressure bulk modulus and its pressure derivative have been determined as (31.5±1.4) GPa and 4.4±0.4, respectively.  相似文献   

9.
Vanadium nitride (V-N) thin films were grown using a reactive d.c. magnetron sputtering process, from a vanadium target (99.999%) in an Ar/N2 gas mixture at different deposition bias voltage. Films were deposited onto silicon (1 0 0) and RUS-3 steel substrates at 400 °C. Structural, compositional, mechanical and electrochemical characterizations were performed by X-ray diffraction (XRD), elastic forward analysis (EFA), nanoindentation, electrochemical impedance spectroscopy (EIS), and Tafel polarization curves, respectively. X-ray diffraction patterns show the presence of (1 1 1) and (2 0 0) crystallographic orientations associated to the V-N cubic phase. Nanoindentation measurements revealed that when the bias voltage increases from 0 V to −150 V the hardness and elastic modulus are increased from 11 GPa to 20 GPa and from 187 GPa to 221 GPa, respectively. EIS and Tafel curves showed that the corrosion rate of steel, coated with V-N single layer films deposited without bias voltage, diminishes 90% compared to the steel without this coating. On the other hand, when the V-N coating was deposited at the highest d.c. bias voltage (−150 V), the corrosion rate was greater than in the steel coated with zero-voltage (0 V) V-N films. This last result could be attributed to the formation of porosities produced by the ion bombardment during the deposition process.  相似文献   

10.
Zirconium oxide (Zr02) thin films are deposited at room temperature by cathodic arc at substrate biases of 0 V, -60 V and -120 V, respectively. The crystal structure, composition, morphology, and deposition rate of the as-deposited thin films are systematically investigated by x-ray diffraction, x-ray photoelectron spectroscopy (XPS) as well as scanning electron microscopy. The results show that the crystal structure, morphology and deposition rate of the films all are dependant on substrate bias. With the increase of bias voltage from 0 V to -120 V, the zirconium oxide thin film grown on silicon wafer first exhibits monoclinic lattice and tetragonal lattice, further evolves monoclinic phase with the preferred orientation along the (-111) and (-222) directions at -60 V and finally along nearly one observed preferred (002) direction under -120 V. In addition, the variations of morphology with bias voltage are correlated to changes of the film structure. The results of XPS demonstrate that Zr elements are almost oxidized completely in the films achieved under -120 V bias.  相似文献   

11.
Monoclinic bismuth oxide (Bi2O3) films have been prepared by thermal oxidation of vacuum evaporated bismuth thin films onto the glass substrates. In order to obtain the single phase Bi2O3, the oxidation temperature was varied in the range of 423-573 K by an interval of 50 K. The as-deposited bismuth and oxidized Bi2O3 films were characterized for their structural, surface morphological, optical and electrical properties by means of X-ray diffraction, scanning electron microscopy (SEM), optical absorption and electrical resistivity measurements, respectively. The X-ray analyses revealed the formation of polycrystalline mixed phases of Bi2O3 (monoclinic, α-Bi2O3 and tetragonal, β-Bi2O3) at oxidation temperatures up to 523 K, while at an oxidation temperature of 573 K, a single-phase monoclinic α-Bi2O3 was formed. From SEM images, it was observed that of as-deposited Bi films consisted of the well-defined isolated crystals of different shapes while after thermal oxidation the smaller dispersed grains were found to be merged to form bigger grains. The changes in the optical properties of Bi2O3 films obtained by thermal oxidation at various temperatures were studied from optical absorption spectra. The electrical resistivity measurement depicted semiconducting nature of Bi2O3 with high electrical resistivity at room temperature.  相似文献   

12.
Zirconium dioxide thin films were deposited on 316L-stainless steel type substrates using DC unbalanced magnetron sputtering. The process parameter of this work was the target-to-substrate distance (dt-s), which was varied from 60 to 120 mm. The crystal structure and surface topography of zirconium dioxide thin films were characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM). The results demonstrate that all of the ZrO2 thin films are composed monoclinic phase. The film sputtered at short dt-s (60 mm) shows a rather heterogeneous, uneven surface. The grain size, roughness, and thickness of thin films were decreased by increasing dt-s. The bioactivity was assessed by investigating the formation of hydroxyapatite (Ca10(PO4)6(OH)2) on the thin film surface soaked in simulated body fluids (SBF) for 7 days. XRD and scanning electron microscopy (SEM) were used to verify the formation of apatite layers on the samples. Bone-like apatites were formed on the surface of the ZrO2 thin film in SBF immersion experiments. A nanocrystalline hydroxyapatite (HA) with a particle size of 2-4 μm was deposited. Higher crystallinity of HA on the surface was observed when the distance dt-s increased to more than 80 mm. Therefore, it seems that a dt-s greater than 80 mm is an important sputtering condition for inducing HA on the zirconia film.  相似文献   

13.
Zirconia (ZrO2) inorganic ceramic nanofibers were produced using electrospinning of the poly(vinyl alcohol)/zirconium acetate as a precursor followed by calcinating and sintering to decompose the polymer and turn the metal salt (zirconium acetate) into the metal oxide. Characterization of the nanofibers, including polymer thermal decomposition, chemical and crystal structure, phase transformations, and fiber morphology were investigated by simultaneous thermal analysis (STA), thermomechanical analysis (TMA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM). The results showed that the polymer decomposition started at 250°C and zirconia nanofibers with different phases (tetragonal and monoclinic) were obtained by the calcination of the precursor nanofibers at various temperatures between 500°C and 1100°C. The initially crystallized zirconia phase, which formed at 500°C, was tetragonal and with increasing calcination temperature, zirconia nanofibers with increasing amount of monoclinic phase were formed. Consequently, at 1100°C, the tetragonal phase disappeared and was transformed to the monoclinic phase of the zirconia completely. Increasing the calcination temperature caused the fiber average diameter decrease and grain growth took place due to the removal of the polymer and organic groups; neighboring grains sintered to each other and formed fibers with a high aspect ratio. At 1100°C the grains size was about the same as the fiber diameter.  相似文献   

14.
Strontium and calcium-modified lead titanate (Pb0.70Ca0.15Sr0.15)TiO3 soft chemistry-derived thin films were prepared on platinum-coated silicon substrate by spin-coating method. Investigations were made on the structure, surface morphology and electrical properties of the film. The results by XRD and FE-SEM showed that the film exhibits a pure tetragonal perovskite phase and an average grain size of about 50-60 nm, respectively. Electrical measurements of a metal-ferroelectric-metal type capacitor exhibited a stable and switchable electrical polarization in the film. The structure of the Au/PCST/Pt capacitor showed well-saturated hysteresis loops at an applied voltage of 300 kV/cm with remanent polarization and coercive field values of 22 μC/cm2 and 100 kV/cm, respectively. At 100 kHz, the dielectric constant and the dielectric loss of the (Pb0.70Ca0.15Sr0.15)TiO3 thin film with thickness 240 nm were 528 and 0.05, respectively.  相似文献   

15.
Geometric structures and atomic positions were studied with plane wave pseudo-potential method based on density functional theory for cubic, tetragonal, and monoclinic phases of TiRh alloy. Their phonon dispersion curves were obtained with frozen phonon method at harmonic approximation using density-functional perturbation theory. Our calculations revealed that both B2 and L10 phases are thermodynamically unstable. Jahn-Teller effect triggers the occurrence of Bain transformation from cubic to tetragonal phase, and then soft-mode phonon further leads to the transition from tetragonal to monoclinic phase on cooling. The monoclinic phase was predicted to be P2/m space group through atomic vibrational movement along [001] direction of virtual frequency modes of L10 phase. The temperature from B2 to L10 and then to P2/m were predicted to be about T=1100.53 K and T=324.48 K through free energy calculations with the electronic plus vibrational energy of formation, respectively, which is in good agreement with experimental observations.  相似文献   

16.
Zr-Si-N films were deposited on silicon and steel substrates by cathodic vacuum arc with different N2/SiH4 flow rates. The N2/SiH4 flow rates were adjusted at the range from 0 to 12 sccm. The films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), hardness and wear tests. The structure and the mechanical properties of Zr-Si-N films were compared to those of ZrN films. The results of XRD and XPS showed that Zr-Si-N films consisted of ZrN crystallites and SiNx amorphous phase. With increasing N2/SiH4 flow rates, the orientation of Zr-Si-N films became to a mixture of (1 1 1) and (2 0 0). The column width became smaller, and then appeared to vanish with the increase in N2/SiH4 flow rates. The hardness and Young's modulus of Zr-Si-N films increased with the N2/SiH4 flow rates, reached a maximum value of 36 GPa and 320 GPa at 9 sccm, and then decreased 32 GPa and 305 GPa at 12 sccm, respectively. A low and stable of friction coefficient was obtained for the Zr-Si-N films. Friction coefficient was about 0.1.  相似文献   

17.
Zirconia nanopowder with doping YO1.5 contents between 0 and 1 mol% were synthesized by the Pechini method. The crystallite dimensions of the powder, around 10 nm, allows for the size stabilization of the tetragonal polymorph over the thermodynamically stable monoclinic one. As the nanopowders are heated to 1200 °C and subsequently cooled back to room temperature, a complex evolution of the phase composition occurs. Upon heating the tetragonal phase transforms slowly into the monoclinic one and the transition cannot be completed before entering the stability range of the tetragonal phase (above 1150 °C). Upon cooling, on the other hand, the reaction is considerably faster and the complete transformation into the monoclinc phase occurs in a narrow temperature range. Rietveld analysis of the high temperature X-ray patterns revealed as, during heating, the transition is mainly controlled by microstructural parameters and in particular it is triggered by the release of RMS microstrain. Upon cooling, on the other hand, the transition is kinetically controlled by the doping content.  相似文献   

18.
Transparent conductive SnO2:F thin films with textured surfaces were fabricated on soda-lime-silica glass substrates by spray pyrolysis. Structure, morphology, optical and electrical properties of the films were investigated. Results show that the film structure, morphology, haze, transmittance and sheet resistance are dependent on the substrate temperature and film thickness. An optimal 810 nm-thick SnO2:F film with textured surface deposited at 520 °C exhibits polycrystalline rutile tetragonal structure with a (2 0 0) orientation. The sheet resistance, average transmittance in visible region, and haze of this film were 8 Ω/□, 80.04% and 11.07%, respectively, which are suitable for the electrode used in the hydrogenated amorphous silicon solar cells.  相似文献   

19.
The zirconium oxide (ZrO2) thin films are deposited on Si (100) and quartz substrates at various substrate temperatures (room temperature–973 K) at an optimized oxygen partial pressure of 3×10?2 mbar using pulsed laser deposition technique. The effect of substrate temperature on microstructural, optical and mechanical properties of the films is investigated. The X-ray diffraction studies show that the films deposited at temperatures ≤773 K are monoclinic, while the films deposited at temperatures ≥873 K show both monoclinic and tetragonal phases. Tetragonal phase content increases with the increase of substrate temperatures. The surface morphology and roughness are investigated using atomic force microscope in contact mode. The optical properties of the films show that the refractive indices (at 550 nm) are found to increase from 1.84 to 2.35 as the temperature raises from room temperature (RT) to 973 K. Nanoindentation measurements show that the hardness of the films is 11.8 and 13.7 GPa for the films deposited at 300 and 973 K, respectively.  相似文献   

20.
Pure and Nb-doped titanium oxide thin films were grown on sapphire substrates by pulsed-laser deposition in vacuum (10−7 mbar). The PLD growth leads to titanium oxide thin films displaying a high oxygen deficiency (TiO1.5) compared with the stoichiometric TiO2 compound. The structural and electrical properties (phase, crystalline orientation, nature and concentration of charge carriers, etc.) of these titanium oxide films were studied by XRD measurements and Hall effect experiments, respectively. The undoped TiO1.5 phase displayed a p-type semiconductivity. Doping this titanium oxide phase with Nb5+ leads to an n-type behaviour as is generally observed for titanium oxide films with oxygen deficiency (TiOx with 1.7 < x < 2). Multilayer homojunctions were obtained by the stacking of TiO1.5 (p-type) and Nb-TiO1.5 (n-type) thin films deposited onto sapphire substrates. Each layer is 75 nm thick and the resulting heterostructure shows a good transparency in the visible range. Finally, the I-V curves obtained for such systems exhibit a rectifying response and demonstrate that it is possible to fabricate p-n homojunctions based only on transparent conductive oxide thin films and on a single chemical compound (TiOx).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号