首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Indium tin oxide (ITO) and titanium dioxide (TiO2) single layer and double layer ITO/TiO2 films were prepared using reactive pulsed laser ablation deposition (RPLAD) with an ArF excimer laser for applications in dye-sensitized solar cells (DSSCs). The films were deposited on SiO2 substrates either at room temperatures (RT) or heated to 200-400 °C. Under optimized conditions, transmission of ITO films in the visible (vis) range was above 89% for films produced at RT and 93% for the ones deposited at higher temperatures. Increasing the substrate temperature from RT to 400 °C enhances the transmission of TiO2 films in the vis-NIR from about 70% to 92%. High transmission (≈90%) was observed for the double layer ITO/TiO2 with a transmission cut-off above 900 nm. From the transmission data, the energies gaps (Eg), as well as the refractive indexes (n) for the films were estimated. n ≈ 2.03 and 2.04, respectively for ITO films and TiO2 film deposited at 400 °C in the visible region. Post-annealing of the TiO2 films for 3 h at 300 and 500 °C was performed to enhance n. The refractive index of the TiO2 films increases with the post-annealing temperature. The direct band gap is 3.6, 3.74 and 3.82 eV for ITO films deposited at RT, 200, and 400 °C, respectively. The TiO2 films present a direct band gap of 3.51 and 3.37 eV for as deposited TiO2 films and when annealed at 400 °C, respectively. There is a shift of about 0.1 eV between ITO and ITO/TiO2 films deposited at 200 °C. The shift decreases by half when the TiO2 film was deposited at 400 °C. Post-annealing was also performed on double layer ITO/TiO2.  相似文献   

2.
In the present study TiO2 films were deposited by spray pyrolysis method onto ITO covered glass and Si (1 0 0) substrates. The spray solution containing titanium(IV) isopropoxide, acetylacetone and ethanol was sprayed at a substrate temperature of 450 °C employing 1-125 spray pulses (1 s spray and 30 s pause). According to AFM, continuous coverage of ITO and Si substrates with TiO2 layer is formed by 5-10 and below 5 spray pulses, respectively. XPS studies revealed that TiO2 film growth on Si substrate using up to 4 spray pulses follows 2D or layer-by-layer-growth. Above 4 spray pulses, 3D or island growth becomes dominant irrespective of the substrate. Only 50 spray pulses result in TiO2 layer with the thickness more than XPS measurement escape depth as any signal from the substrate could not be detected. TiO2 grain size remains 30 nm on ITO and increases from 10-20 nm to 50-100 nm on Si substrate with the number of spray pulses from 1 to 125.  相似文献   

3.
TiO2 thick films deposited on macroporous reticulated Al2O3 foams with pore size of 10 ppi and 15 ppi were prepared using dip coating from slurries of Aeroxide® P25 nanopowder and precipitated titania. All prepared films have sufficiently good adhesion to the surface of the substrate also in case of strongly cracked films. No measurable release of deposited TiO2 after repeated photocatalytic cycles was observed. The photocatalytic activity was characterized as the rate of mineralization of aqueous phenol solution under irradiation of UVA light by TOC technique. The best activity was obtained with Aeroxide® P25 coated Al2O3 foam with the pore size of 10 ppi, annealed at 600 °C. The optimal annealing temperature for preparation of films from precipitated titania could be determined at 700 °C. Films prepared by sol-gel deposition technique were considerably thinner compared to coatings made of suspensions and their photocatalytic activity was significantly smaller.  相似文献   

4.
p-Type nickel oxide thin films were prepared by sol-gel method, and their structural, optical and electrical properties were investigated. The Ni(OH)2 sol was formed from nickel (II) acetate tetrahydrate, Ni(CH3COO)2·4H2O, in a mixture of alcohol solution and poly(ethylene glycol), and deposited on an ITO substrate by spin coating followed by different heat treatments in air (50-800 °C). The formation and composition of NiO thin film was justified by EDX analysis. It is found that the thickness of the NiO film calcined at 450 °C for 1 h is about 120 nm with average particle size of 22 nm, and high UV transparency (∼75%) in the visible region is also observed. However, the transmittance is negligible for thin films calcined at 800 °C and below 200 °C due to larger particle size and the amorphous characteristics, respectively. Moreover, the composite electrode comprising n-type TiO2 and p-type NiO is fabricated. The current-voltage (I-V) characteristics of the composite TiO2/NiO electrode demonstrate significant p-type behavior by the shape of the rectifying curve in dark. The effect of calcination temperature on the rectification behavior is also discussed.  相似文献   

5.
The article reports on correlations between the process parameters of reactive pulsed dc magnetron sputtering, physical properties and the photocatalytic activity (PCA) of TiO2 films sputtered at substrate surface temperature Tsurf ≤ 180 °C. Films were deposited using a dual magnetron system equipped with Ti (Ø50 mm) targets in Ar + O2 atmosphere in oxide mode of sputtering. The TiO2 films with highly photoactive anatase phase were prepared without a post-deposition thermal annealing. The decomposition rate of the acid orange 7 (AO7) solution during the photoactivation of the TiO2 film with UV light was used for characterization of the film PCA. It was found that (i) the partial pressure of oxygen pO2 and the total sputtering gas pressure pT are the key deposition parameters influencing the TiO2 film phase composition that directly affects its PCA, (ii) the structure of sputtered TiO2 films varies along the growth direction from the film/substrate interface to the film surface, (iii) ∼500 nm thick anatase TiO2 films with high PCA were prepared and (iv) the structure of sputtered TiO2 films is not affected by the substrate surface temperature Tsurf when Tsurf < 180 °C. The interruption of the sputtering process and deposition in long (tens of minutes) pulses alternating with cooling pauses has no effect on the structure and the PCA of TiO2 films and results in a decrease of maximum value of Tsurf necessary for the creation of nanocrystalline nc-TiO2 film. It was demonstrated that crystalline TiO2 films with high PCA can be sputtered at Tsurf ≤ 130 °C. Based on obtained results a phase zone model of TiO2 films was developed.  相似文献   

6.
Titanium dioxide thin films have been prepared from tetrabutyl-orthotitanate solution and methanol as a solvent by sol-gel dip coating technique. TiO2 thin films prepared using a sol-gel process have been analyzed for different annealing temperatures. Structural properties in terms of crystal structure were investigated by Raman spectroscopy. The surface morphology and composition of the films were investigated by atomic force microscopy (AFM). The optical transmittance and reflectance spectra of TiO2 thin films deposited on silicon substrate were also determined. Spectroscopic ellipsometry study was used to determine the annealing temperature effect on the optical properties and the optical gap of the TiO2 thin films. The results show that the TiO2 thin films crystallize in anatase phase between 400 and 800 °C, and into the anatase-rutile phase at 1000 °C, and further into the rutile phase at 1200 °C. We have found that the films consist of titanium dioxide nano-crystals. The AFM surface morphology results indicate that the particle size increases from 5 to 41 nm by increasing the annealing temperature. The TiO2 thin films have high transparency in the visible range. For annealing temperatures between 1000 and 1400 °C, the transmittance of the films was reduced significantly in the wavelength range of 300-800 nm due to the change of crystallite phase and composition in the films. We have demonstrated as well the decrease of the optical band gap with the increase of the annealing temperature.  相似文献   

7.
Anatase thin films (<200 nm in thickness) embedding Degussa P25 TiO2 were prepared by sol-gel method. TiO2-anatase thin films were deposited on a fiberglass substrate and then ground to obtain glass microrods containing the composite films. The film structure was characterized using Raman spectroscopy, atomic absorption and UV-vis spectrophotometry, and atomic force microscopy. The photocatalytic activity of the composite films, calcined at 450 °C, and the regeneration of the activity under the same experimental conditions, were assessed using gas chromatography to study the photodegradation of phenol, an industrial pollutant, in water under 365 nm irradiation. The film with 15.0 wt.% of P25 TiO2 was found to be more photoactive (54 ppm of degraded phenol at 6 h of illumination) than the other ones.  相似文献   

8.
In this study, TiO2−xNx/TiO2 double layers thin film was deposited on ZnO (80 nm thickness)/soda-lime glass substrate by a dc reactive magnetron sputtering. The TiO2 film was deposited under different total gas pressures of 1 Pa, 2 Pa, and 4 Pa with constant oxygen flow rate of 0.8 sccm. Then, the deposition was continued with various nitrogen flow rates of 0.4, 0.8, and 1.2 sccm in constant total gas pressure of 4 Pa. Post annealing was performed on as-deposited films at various annealing temperatures of 400, 500, and 600 °C in air atmosphere to achieve films crystallinity. The structure and morphology of deposited films were evaluated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM). The chemical composition of top layer doped by nitrogen was evaluated by X-ray photoelectron spectroscopy (XPS). Photocatalytic activity of samples was measured by degradation of Methylene Blue (MB) dye. The optical transmittance of the multilayer film was also measured using ultraviolet-visible light (UV-vis) spectrophotometer. The results showed that by nitrogen doping of a fraction (∼1/5) of TiO2 film thickness, the optical transmittance of TiO2−xNx/TiO2 film was compared with TiO2 thin film. Deposited films showed also good photocatalytic and hydrophilicity activity at visible light.  相似文献   

9.
The TiO2 nanorod arrays, with about 1.8 μm lengths, have been deposited on ITO substrates by dc reactive magnetron sputtering at different target-substrate distances. The average diameter of these nanorods can be modified from about 45 to 85 nm by adjusting the target-substrate distance from 90 to 50 mm. These nanorods are highly ordered and perpendicular to the substrate. Both XRD and Raman measurements show that the nanorods prepared at different target-substrate distances have only an anatase TiO2 phase. The nanorods prepared at the target-substrate distance less than 80 mm have a preferred orientation along the (2 2 0) direction. However, this preferred orientation disappears as the target-substrate distance is more than 80 mm. These TiO2 nanorods have been used as the electrodes for dye-sensitized solar cells (DSSCs). The highest conversion efficiency, about 4.78%, has been achieved for TiO2 nanorods prepared at 80 mm target-substrate distance.  相似文献   

10.
Iron oxide thin films were prepared by spray pyrolysis technique onto glass substrates from iron chloride solution. They were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and (UV-vis) spectroscopy. The films deposited at Ts ≤ 450 °C were amorphous; while those produced at Tsub = 500 °C were polycrystalline α-Fe2O3 with a preferential orientation along the (1 0 4) direction. By observing scanning electron microscopy (SEM), it was seen that iron oxide films were relatively homogeneous uniform and had a good adherence to the glass substrates. The grain size was found (by RX) between 19 and 25 nm. The composition of these films was examined by X-ray photoelectron spectroscopy and electron probe microanalysis (EPMA). These films exhibited also a transmittance value about 80% in the visible and infrared range. The cyclic voltammetry study showed that the films of Fe2O3 deposited on ITO pre-coated glass substrates were capable of charge insertion/extraction when immersed in an electrolyte of propylene carbonate (PC) with 0.5 M LiCLO4.  相似文献   

11.
We investigate an environmentally friendly aqueous solution system for rutile TiO2 violet color nanocrystalline thin films growth on ITO substrate at room temperature. Film shows considerable absorption in visible region with excitonic maxima at 434 nm. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), UV-vis, water surface contact angle and energy dispersive X-ray analysis (EDX) techniques in addition to actual photo-image that shows purely rutile phase of TiO2 with violet color, super-hydrophilic and densely packed nanometer-sized spherical grains of approximate diameter 3.15 ± 0.4 nm, characterize the films. Band gap energy of 4.61 eV for direct transition was obtained for the rutile TiO2 films. Film surface shows super-hydrophilic behavior, as exhibited water contact angle was 7°. Strong visible absorption (not due to chlorine) leaves future challenge to use these films in extremely thin absorber (ETA) solar cells.  相似文献   

12.
Aluminum doped zinc oxide (AZO) films were substitutes of the SnO2:F films on soda lime glass substrate in the amorphous thin-film solar cells due to good properties and low cost. In order to improve properties of AZO films, the TiO2 buffer layer had been introduced. AZO films with and without TiO2 buffer layer were deposited on soda lime glass substrates by r.f. magnetron sputtering. Subsequently, one group samples were annealed in vacuum (0.1 Pa) at 500 °C for 120 s using the RTA system, and the influence of TiO2 thickness on the properties of AZO films had been discussed. The XRD measurement results showed that all the films had a preferentially oriented (0 0 2) peak, and the intensity of (0 0 2) peak had been enhanced for the AZO films with TiO2 buffer layer. The resistivity of TiO2 (3.0 nm)/AZO double-layer film is 4.76×10−4 Ω cm with the maximum figure merit of 1.92×10−2 Ω−1, and the resistivity has a remarkable 28.7% decrease comparing with that of the single AZO film. The carrier scattering mechanism of TiO2 (3.0 nm)/AZO double-layer film had been described by Hall measurement in different temperatures. The average transmittance of all the films exceeded 92% in the visible spectrum. Another group samples were heat treated in the quartz tube in air atmosphere, and the effect of TiO2 thickness on thermal stability of AZO films had been discussed.  相似文献   

13.
Be3N2 thin films have been grown on Si(1 1 1) substrates using the pulsed laser deposition method at different substrate temperatures: room temperature (RT), 200 °C, 400 °C, 600 °C and 700 °C. Additionally, two samples were deposited at RT and were annealed after deposition in situ at 600 °C and 700 °C. In order to obtain the stoichiometry of the samples, they have been characterized in situ by X-ray photoelectron (XPS) and reflection electron energy loss spectroscopy (REELS). The influence of the substrate temperature on the morphological and structural properties of the films was investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). The results show that all prepared films presented the Be3N2 stoichiometry. Formation of whiskers with diameters of 100-200 nm appears at the surface of the films prepared with a substrate temperature of 600 °C or 700 °C. However, the samples grown at RT and annealed at 600 °C or 700 °C do not show whiskers on the surface. The average root mean square (RMS) roughness and the average grain size of the samples grown with respect the substrate temperature is presented. The films grown with a substrate temperature between the room temperature to 400 °C, and the sample annealed in situ at 600 °C were amorphous; while the αBe3N2 phase was presented on the samples with a substrate temperature of 600 °C, 700 °C and that deposited with the substrate at RT and annealed in situ at 700 °C.  相似文献   

14.
Transparent and conducting TiO2/Au/TiO2 (TAuT) films were deposited by reactive magnetron sputtering on polycarbonate substrates to investigate the effect of the Au interlayer on the optical, electrical, and structural properties of the films. In TAuT films, the Au interlayer thickness was kept at 5 nm. Although total thickness was maintained at 100 nm, the stack structure was varied as 50/5/45, 70/5/25, and 90/5/5 nm.In XRD pattern, the intermediate Au films were crystallized, while all TAuT films did not show any diffraction peaks for TiO2 films with regardless of stack structure. The optical and electrical properties were dependent on the stack structure of the films. The lowest sheet resistance of 23 Ω/□ and highest optical transmittance of 76% at 550 nm were obtained from TiO2 90 nm/Au 5 nm/TiO2 5 nm films. The work function was dependent on the film stack. The highest work function (4.8 eV) was observed with the TiO2 90 nm/Au 5 nm/TiO2 5 nm film stack. The TAuT film stack of TiO2 90 nm/Au 5 nm/TiO2 5 nm films is an optimized stack that may be an alternative candidate for transparent electrodes in flat panel displays.  相似文献   

15.
Indium-tin oxide (ITO) films deposited on heated and non-heated glass substrates by a pulsed Nd:YAG laser at 355 nm and ∼2.5 J/cm2 were used in the fabrication of simple organic light-emitting diodes (OLEDs), ITO/(PVK + Alq3 + TPD)/Al. The ITO was deposited on heated glass substrates which possessed resistivity as low as ∼3 × 10−4 Ω cm, optical transmission as high as ∼92% and carrier concentration of about ∼5 × 1020 cm−3, were comparable to the commercial ITO. Substrate heating transformed the ITO microstructure from amorphous to polycrystalline, as revealed by the XRD spectrum. While the polycrystalline ITO produced higher OLED brightness, it was still lower than that on the commercial ITO due to surface roughness. A DLC layer of ∼1.5 nm deposited on this ITO at laser fluence of >12.5 J/cm2 improved its device brightness by suppressing the surface roughness effect.  相似文献   

16.
Silver nanorods with average diameters of 120-230 nm and aspect ratio of 1.7-5.0 were deposited on the surface of TiO2 films by photoelectrochemical reduction of Ag+ to Ag under UV light. The composite films prepared on soda-lime glass substrates were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results show that the TiO2 film after UV irradiation in AgNO3 solution is composed of anatase phase TiO2 and metallic silver with face centered cubic structure. Other compounds cannot be found in the final films. The maximum deposition content of silver particles on the surface of TiO2 film was obtained with the AgNO3 concentration of 0.1 M. The kinetic growth rates of silver particles can be controlled by photocatalytic activity of TiO2 films. The studies suggest that the growth rates of silver particles increase with the enhancement of photocatalytic activity of TiO2 films. The maximum growth rate of silver particles loaded on TiO2 films can be up to 0.353 nm min−1 among samples 1#, 2# and 3#, while the corresponding apparent rate constant of TiO2 is 1.751 × 10−3 min−1.  相似文献   

17.
We report a successful fabrication of c-axis oriented GdBa2Cu3O7−δ (GdBCO) films on the BaSnO3 (BSO) buffer layers on ion-beam assisted deposition (IBAD)-MgO template by pulsed-laser deposition (PLD). The (0 0 l) growth and in-plane textures of BSO buffer layers were found sensitive to the substrate temperature (Ts). With increasing the BSO layer thickness up to ∼165 nm, in-plane texture (Δ? ∼ 6.2°) of BSO layers was almost unaltered while completely c-axis oriented BSO layers were obtainable from samples with the thickness below ∼45 nm. On the BSO buffer layers showing in-plane texture of 6.2° and RMS surface roughness of ∼8.6 nm, GdBCO films were deposited at 780–800 °C. All GdBCO films exhibited Δ? values of 4.6–4.7°, Tc,zero of ∼91 K, and critical current density (Jc) over 1 MA/cm2 at 77 K in a self-field. The highest Jc value of 1.82 MA/cm2 (Ic of 51 A/cm-width) was achieved from the GdBCO film deposited at Ts of 790 °C. These results support that BSO can be a promising buffer layer on the IBAD-MgO template for obtaining high-Jc GdBCO coated conductors.  相似文献   

18.
We have investigated the control of photocatalytic behavior under deposited conditions of non-sintered target of different molar ratios with TiO2 and La2O3 from 1:0 to 1:2 for heavily La doping, and post-annealing temperature from 600 °C to 1000 °C for crystallizing by pulsed laser deposition. We have successfully crystallized heavily La-doped TiO2 films with post-annealing temperature over 800 °C and with molar ratio of TiO2:La2O3 over 1:1 on a quartz substrate. Heavily La-doped TiO2 films are observed the decomposition of methylene blue and a water-splitting reaction in photocatalytic behavior under Xe light irradiation. When stoichiometric La-doped TiO2 (TiO2:La2O3 = 1: 1) is synthesized with heat-treatment at 900 °C, the best results are obtained under photocatalytic behavior and pure La2Ti2O7 crystalline were obtained.  相似文献   

19.
A series of ZnO films with TiO2 buffer on Si (1 0 0) substrates were prepared by DC reactive sputtering. Growth temperature of TiO2 buffer changed from 100 °C to 400 °C, and the influence on the crystal structures and optical properties of ZnO films have been investigated. The XRD results show that the ZnO films with TiO2 buffer have a hexagonal wurtzite structure with random orientation, and with the increase of growth temperature of TiO2 buffer, the residual stresses were released gradually. Specially, the UV emission enhanced distinctly and FWHMs (full width half maximum) decreased linearly with the increasing TiO2 growth temperature. The results all come from the improvement of crystal quality of ZnO films.  相似文献   

20.
TiO2, which is high in refractive index and dielectric constant, plays an important role in the fields of optics and electronics. In this work, TiO2 films were prepared on glass substrates by the technique of ion beam assisted electron beam evaporation. The films were deposited at 50, 150 and 300 °C, respectively. Then the as-deposited TiO2 films were annealed at 450 °C for 1 h in vacuum atmosphere. Structures and optical properties of TiO2 films were characterized by XRD, SEM, ellipsometry and spectrophotometer. As a result, the structure and the refractive index of films were improved by both the annealing and the increasing of the deposition temperature. The UV-vis transmittance spectra also confirmed that the deposition temperature has a significant effect on the transparency of the thin films. The highest transparency over the visible wavelength region of spectra was obtained at the deposition temperature of 300 °C. The allowed direct band gap at the deposition temperature ranging from 50 to 300 °C was estimated to be in the range from 3.81 to 3.92 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号