首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 396 毫秒
1.
In this study, we generalize earlier investigations of Benjamin and Sugiyama & Paı̈doussis devoted to the stability of articulated pipes conveying fluid. The present study additionally incorporates the translational and rotational elastic foundations in an attempt to answer the following question: Do the elastic foundations increase the critical velocity of the fluid? It turns out that the attachment of the elastic foundation along the entire length of the pipe may either strengthen or weaken the system, with attendant increase or decrease in the critical velocity. The physical mechanism of the change of type of instability plays a crucial role in deciding whether or not the elastic foundation increases the critical velocity. If the elastic foundations are attached within the first pipe only, the instability mechanism is by flutter. If the elastic foundations are attached beyond the first pipe, then divergence may occur. The interplay of the two mechanisms may lead to a decrease of the critical velocity of the system with elastic foundations. A remarkable nonmonotonous dependence of the critical velocity with respect to the attachment foundation ratio is established.  相似文献   

2.
IntroductionItiswell_knownthatsimplysupportedpipesconveyingfluidarenamedasgyroscopiccon servativesystembecauseitsenergyattheexitisequaltothatattheenter[1].Thissystemwasstudiedbysomescholarsathomeandabroad .Paidoussis[2 ]studiedtheproblemofdynamicsandstabi…  相似文献   

3.
分析弹性支承输流管道的失稳临界流速   总被引:5,自引:1,他引:5  
研究了两端弹性支承输流管道静态失稳和动态失稳临界流速. 根据梁模型横向弯曲振动模态 函数,由两端弹性支承的边界条件得到了其模态函数的一般表达式. 根据特征方程具体分析 了弹性支承刚度、质量比、流体压力和管截面轴向力等主要参数对失稳临界流速的影响. 数 值计算结果表明,管道在弹性支承下的动力稳定性比较复杂,在较小的弹性支承刚度和较小 的参数范围内,管道主要表现为动态颤振失稳;在较大的弹性支承刚度和较大的参数作用下, 管道的失稳形式主要表现为静态失稳;并且失稳临界流速随流体压力和管截面轴向压力的增 加而下降,随管截面轴向拉力的增加而上升.  相似文献   

4.
In this work, the nonlinear behaviors of soft cantilevered pipes containing internal fluid flow are studied based on a geometrically exact model, with particular focus on the mechanism of large-amplitude oscillations of the pipe under gravity. Four key parameters, including the flow velocity, the mass ratio, the gravity parameter, and the inclination angle between the pipe length and the gravity direction, are considered to affect the static and dynamic behaviors of the soft pipe. The stability analyses show that, provided that the inclination angle is not equal to π, the soft pipe is stable at a low flow velocity and becomes unstable via flutter once the flow velocity is beyond a critical value. As the inclination angle is equal to π, the pipe experiences, in turn,buckling instability, regaining stability, and flutter instability with the increase in the flow velocity. Interestingly, the stability of the pipe can be either enhanced or weakened by varying the gravity parameter, mainly dependent on the value of the inclination angle.In the nonlinear dynamic analysis, it is demonstrated that the post-flutter amplitude of the soft pipe can be extremely large in the form of limit-cycle oscillations. Besides,the oscillating shapes for various inclination angles are provided to display interesting dynamical behaviors of the inclined soft pipe conveying fluid.  相似文献   

5.
Carbon nanotubes are finding significant application to nanofluidic devices. This work studies the influence of internal moving fluid on free vibration and flow-induced flutter instability of cantilever carbon nanotubes based on a continuum elastic model. Since the flow-induced vibration of cantilever pipes is non-conservative in nature, cantilever carbon nanotubes conveying fluid are damped with decaying amplitude for flow velocity below a certain critical value. Beyond this critical flow velocity, flutter instability occurs and vibration becomes amplified with growing amplitude. Our results indicate that internal moving fluid substantially affects vibrational frequencies and the decaying rate of amplitude especially for longer cantilever carbon nanotubes of larger innermost radius at higher flow velocity, and the critical flow velocity for flutter instability in some cases may fall within the practical range. On the other hand, a moderately stiff surrounding elastic medium (such as polymers) can significantly suppress the effect of internal moving fluid on vibrational frequencies and suppress or eliminate flutter instability within the practical range of flow velocity.  相似文献   

6.
Based on the differential constitutive relationship of linear viscoelastic, material, a solid-liquid coupling vibration equation for viscoelastic pipe conveying fluid is derived by the D'Alembert's principle. The critical flow velocities and natural frequencies of the cantilever pipe conveying fluid with the Kelvin model (flutter instability) are calculated with the modified finite difference method in the form of the recurrence formula. The curves between the complex frequencies of the first, second and third mode and flow velocity of the pipe are plotted. On the basis of the numerical, calculation results, the dynamic behaviors and stability of the pipe are discussed. It should be pointed out that the delay time of viscoelastic material with the Kelvin model has a remarkable effect on the dynamic characteristics and stability behaviors of the cantilevered pipe conveying fluid, which is a gyroscopic non-conservative system.  相似文献   

7.
The dynamic stability of a submerged cantilever pipe conveying fluid from the free end to the fixed one is considered as one of the unresolved issues in the area of fluid–structure interaction. There is a contradiction between theoretical predictions and experiments. Reported experiments did not show any instability, while theory predicts instability beyond a critical fluid velocity. Recently, several papers appeared, improving the theoretical modelling of pipe dynamics. All theories predict instability, either oscillatory or static, referred to here as flutter and divergence, respectively. A new test set-up was designed to investigate the hypothesis that previous experimental set-ups could not allow observations of pipe instability or the pipe aspirating water is unconditionally stable. In this new test set-up, the fluid velocity could exceed the theoretically predicted critical velocities. A cantilever pipe of about 5 m length was partly submerged in water. The free open end of the pipe was in the water, whereas the fixed end was above the waterline. The experiments clearly showed that the cantilever pipe aspirating water is unstable beyond a critical velocity of water convection through the pipe. Below this velocity the pipe is stable, whereas above it the pipe shows a complex motion that consists of two alternating phases. The first phase is a nearly periodic orbital motion with maximum amplitude of a few pipe diameters, whereas the second one is a noise-like vibration with very small amplitudes. Increasing the internal fluid velocity results in a larger amplitude of the orbital motion, but does not change the pipe motion qualitatively.  相似文献   

8.
Stability analysis of viscoelastic curved pipes conveying fluid   总被引:1,自引:0,他引:1  
Based on the Hamilton' s principle for elastic systems of changing mass, a differential equation of motion for viscoelastic curved pipes conveying fluid was derived using variational method, and the complex characteristic equation for the viscoelastic circular pipe conveying fluid was obtained by normalized power series method. The effects of dimensionless delay time on the variation relationship between dimensionless complex frequency of the clamped-clamped viscoelastic circular pipe conveying fluid with the Kelvin-Voigt model and dimensionless flow velocity were analyzed. For greater dimensionless delay time, the behavior of the viscoelastic pipe is that the first, second and third mode does not couple, while the pipe behaves divergent instability in the first and second order mode, then single-mode flutter takes place in the first order mode.  相似文献   

9.
This article considers the behaviour of a fluid conveying pipe on a partial elastic foundation. The model of the pipe is that of a Timoshenko beam; the foundation response is of Wieghardt type. Both material and environmental damping are taken into account. The critical value of the velocity of the fluid inducing dynamical instability of the system is evaluated as a function of the attachment ratio of the foundation for various values of the physical quantities involved. It is shown that this dependance is not always monotonic.  相似文献   

10.
三参量固体模型粘弹性输流管道的动力特性分析   总被引:2,自引:0,他引:2  
推导了三参量固体模型粘弹性输流管道的振动微分方程 ,计算了在不同无量纲松弛系数和弹性常数比下管道的无量纲临界流速和无量纲自振复频率 ,并给出了前三阶复频率与流速的关系 .计算结果表明 ,质量比、无量纲松弛系数及无量纲弹性常数比对输流管道的动力特性均有影响 .  相似文献   

11.
固—液耦合Timoshenko管道的稳定性分析   总被引:12,自引:0,他引:12  
根据Hamilton原理的固-液耦合振同分方程用幂级数法计算了Timoshenko管道的固有频率和临界流速。给出了管道前三阶固有频率-流速的关系曲线,分析了转动惯量对该输流管道的稳定特性的影响。计算结果表明,转动一对两端简支的固-液合Timoshenko管道的静力失稳没有影响,但对其频率特性和动力失稳有影响。  相似文献   

12.
以非局部弹性理论为基础,采用欧拉-伯努利梁模型,考虑碳纳米管的小尺度效应,应用哈密顿原理获得了温度场作用下的输流悬臂单层碳纳米管(SWCNT)的振动控制方程以及边界条件,依靠微分变换法(DTM法)对此高阶偏微分方程进行求解,通过数值计算研究了温度场中悬臂单层输流碳纳米管的振动与颤振失稳问题。结果表明:管内流体流速、温度场中温度变化情况与小尺度参数都会对系统振动频率以及颤振失稳临界流速产生影响。其中,小尺度效应将会降低悬臂输流系统的稳定性,使系统更为柔软;而高温场与低温场对系统动态失稳的影响不同,低温场中随温度变化值的增加,系统的稳定性提高;高温场这一作用效果恰好与之相反。  相似文献   

13.
The effect of internal plug flow on the lateral stability of fluid conveying pipes is investigated by determining the absolute or convective nature of the instability from the analytically derived linear dispersion relation. The fluid–structure interaction is modelled by following the work of Gregory & Paı̈doussis. The formulation of the fluid-conveying pipe problem is shown to be related to previous studies of a flat plate in the presence of uniform flow by Brazier-Smith & Scott and Crigthon & Oswell. The different domains of stability, convective instability, and absolute instability are explicitly derived in control parameter space. The effects of flow velocity, fluid–structure mass ratio, stiffness of the elastic foundation, bending rigidity and axial tension are considered. Absolute instability in flexural pipes prevails over a wide range of parameters. Convective instability is mostly found in tensioned pipes, which are modelled by a generalized linear Klein–Gordon equation. The impulse response is given in closed form or as an integral approximation and its behaviour confirms the results found directly from the dispersion equation.  相似文献   

14.
含集中质量悬臂输流管的稳定性与模态演化特性研究   总被引:2,自引:0,他引:2  
易浩然  周坤  代胡亮  王琳  倪樵 《力学学报》2020,52(6):1800-1810
本文主要研究通过调控集中质量对悬臂输流管稳定性和振动模态特性的影响规律,为输流管动力学性能的可控性提供理论指导和实验依据. 首先基于扩展的哈密顿原理,建立了含集中质量悬臂输流管的非线性动力学理论模型. 基于线性动力学特性分析,研究发现集中质量沿管道轴向位置变化对输流管发生颤振失稳的临界流速有重要影响.并通过伽辽金前四阶模态截断处理线性矩阵方程式,定性地分析了集中质量位置与质量比的变化对于输流管稳定性影响的变化.实验结果表明, 输流管的颤振失稳模态随集中质量位置的变化发生了转迁. 此外,基于动力学理论分析, 发现集中质量比值对失稳临界流速也有重要的影响,且主要取决于集中质量的安装位置. 基于非线性特性,进一步分析了集中质量对输流管振动幅值的影响. 实验和理论研究发现,集中质量位置从固定端向自由端变化时, 输流管振幅表现出先增大后减小趋势,且振动模态也从二阶转迁到三阶.本研究有望为输流管振动驱动应用提供理论支撑与指导意义.   相似文献   

15.
本文主要研究通过调控集中质量对悬臂输流管稳定性和振动模态特性的影响规律,为输流管动力学性能的可控性提供理论指导和实验依据. 首先基于扩展的哈密顿原理,建立了含集中质量悬臂输流管的非线性动力学理论模型. 基于线性动力学特性分析,研究发现集中质量沿管道轴向位置变化对输流管发生颤振失稳的临界流速有重要影响.并通过伽辽金前四阶模态截断处理线性矩阵方程式,定性地分析了集中质量位置与质量比的变化对于输流管稳定性影响的变化.实验结果表明, 输流管的颤振失稳模态随集中质量位置的变化发生了转迁. 此外,基于动力学理论分析, 发现集中质量比值对失稳临界流速也有重要的影响,且主要取决于集中质量的安装位置. 基于非线性特性,进一步分析了集中质量对输流管振动幅值的影响. 实验和理论研究发现,集中质量位置从固定端向自由端变化时, 输流管振幅表现出先增大后减小趋势,且振动模态也从二阶转迁到三阶.本研究有望为输流管振动驱动应用提供理论支撑与指导意义.  相似文献   

16.
Based on an analytical study, a numerical analysis is made of the dynamic stability of a cantilevered steel pipe conveying a fluid. The pipe is modeled by a beam restrained at the left end and supported by a special device (a rotational elastic restraint plus a Q-apparatus) at the right end. The numerical analysis reveals that the critical velocity of the fluid depends on the governing parameters of the problem such as the ratio of the fluid mass to the pipe mass per unit length and the rotational elastic constant at the right end  相似文献   

17.
Based on the nonlinear mathematical model of motion of a horizontally can-tilevered rigid pipe conveying fluid, the 3:1 internal resonance induced by the minimum critical velocity is studied in details. With the detuning parameters of internal and primary resonances and the amplitude of the external disturbing excitation varying, the flow in the neighborhood of the critical flow velocity yields that some nonlinearly dynamical behaviors occur in the system such as mode exchange, saddle-node, Hopf and co-dimension 2 bifurcations. Correspondingly, the periodic motion losses its stability by jumping or flutter, and more complicated motions occur in the pipe under consideration. The good agreement between the analytical analysis and the numerical simulation for several parameters ensures the validity and accuracy of the present analysis.  相似文献   

18.
Based on the nonlinear mathematical model of motion of a horizontally cantilevered rigid pipe conveying fluid, the 3:1 internal resonance induced by the minimum critical velocity is studied in details. With the detuning parameters of internal and primary resonances and the amplitude of the external disturbing excitation varying, the flow in the neighborhood of the critical flow velocity yields that some nonlinearly dynamical behaviors occur in the system such as mode exchange, saddle-node, Hopf and co-dimension 2 bifurcations. Correspondingly, the periodic motion losses its stability by jumping or flutter, and more complicated motions occur in the pipe under consideration.The good agreement between the analytical analysis and the numerical simulation for several parameters ensures the validity and accuracy of the present analysis.  相似文献   

19.
The dynamics and stability of fluid-conveying corrugated pipes are investigated. The flow velocity is assumed to harmonically vary along the pipe rather than with time. The dimensionless equation is discretized with the differential quadrature method(DQM). Subsequently, the effects of the mean flow velocity and two key parameters of the corrugated pipe, i.e., the amplitude of the corrugations and the total number of the corrugations, are studied. The results show that the corrugated pipe will lose stability by flutter even if it has been supported at both ends. When the total number of the corrugations is sufficient, this flutter instability occurs at a micro flow velocity. These phenomena are verified via the Runge-Kutta method. The critical flow velocity of divergence is analyzed in detail. Compared with uniform pipes, the critical velocity will be reduced due to the corrugations, thus accelerating the divergence instability. Specifically,the critical flow velocity decreases if the amplitude of the corrugations increases. However, the critical flow velocity cannot be monotonously reduced with the increase in the total number of the corrugations. An extreme point appears, which can be used to realize the parameter optimization of corrugated pipes in practical applications.  相似文献   

20.
We have carried out a numerical investigation of the three dimensional nonlinear dynamics of a cantilevered pipe conveying fluid in the presence of gravity. The pipe may be misaligned at the clamped end with respect to gravity, and the effects of this misalignment are the main objects of the present investigation. The problem has been formulated using the Cosserat rod model. First, we have computed the equilibrium solutions and used them to experimentally validate both the Cosserat model and the constitutive law. Then, we have analyzed the occurrence of flutter, via Hopf bifurcation, for critical values of the relevant parameters of the problem, such as fluid to total mass ratio, dimensionless flow rate, dimensionless gravity and misalignment angle. The influence of the equilibrium solution on flutter has been explored, and the results of the linear stability analysis show that the stabilizing or destabilizing effect of fluid flow, either in or out of the plane of the pipe, depend crucially on the misalignment. We have also computed the non-linear periodic behavior after flutter instability by two different methods: the first one is by solving the full nonlinear equations by direct integration in time and space, while the second one is by assuming the time dependence given by an appropriate ansatz. Circular periodic orbits have then been studied and found that its loss of stability via Hopf bifurcation gives rise to stable planar periodic orbits. Finally, we have also computed the multiply periodic and chaotic behaviors which take place for sufficiently large values of the flow rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号