首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
应用X射线荧光光谱法测定了镍基、钴基和铁基合金中质量分数在0.1%~8.50%范围内钽的含量。综合考虑,选择钽元素的Lβ1线作为分析谱线,并选择背景位置2θ为39.50°。在上述3类合金中常含有的铌(其Kβ1线)、铪(其Lβ2线)和钨(其Lβ4线)与钽的Lβ1线有重叠干扰,影响钽的测定。用合适的标准样品分别计算出上述3种元素对钽的重叠干扰系数K,并借助仪器的FP-工作软件用基本参数法消除这3种元素对钽测定的干扰。用所提出的方法分析了钽质量分数在0.015%~4.81%之间的11个标准样品或已知样品,测定结果与认定值或已知值相符。其中2个样品测定值的相对标准偏差(n=7)分别为0.46%(wTa=4.278%)和9.9%(wTa=0.020%)。  相似文献   

2.
采用X射线荧光光谱法测定铁基和镍基合金中磷的含量。选用钨的Mα线和钼的Lα线作为测量重叠干扰系数时的参照线。选用合金系统中不存在的钾和钪元素作为校正元素代替钨和钼,这两个元素实际测量的分别是钨的Mα线和钼的Lα线。分别用只含钼和同时含钼、钨的两套标准样品测定了重叠干扰系数,并制定了分析磷的校准曲线。方法应用于标准样品的测定,测定值与认定值相符,测定值的相对标准偏差(n=10)为0.68%。  相似文献   

3.
应用整套标准样品法和基本参数(FP)法计算谱线重叠校正系数(K)效果较好。应用整套标准样品法需选用与被测样品具有相同基体和近似组成的标准样品;由于共存组分的谱线重叠的干扰常导致校正曲线产生较大的负截距,需通过多次迭代计算消除截距而使曲线通过原点,因为只有这样得到的K和M才是真值。实践中常有一些例子不能用整套标准样品法计算K值,例如钢中测定低含量铬时受到钒的重叠干扰问题。在此实例中除了钒对铬的谱线重叠干扰之外,还有仪器通道材料的干扰,此时,必须先用瑞利散射校正法消除此干扰后,选用铁基的标准样品,用FP法计算K值,可消除钒对铬的谱线重叠干扰。  相似文献   

4.
应用基本参数(FP)法虚拟合成标准样品制作了X射线荧光光谱法测定不同类型的铁基合金中的26种元素的通用工作曲线。选择最佳的仪器工作条件和合理的待测元素的分析线系,测定了9种元素、受共存元素重叠干扰的校正系数,用瑞利散射线扣除背景及通道材料的影响。在设定虚拟合成标准样品中各元素的含量,并算得在此设定值下的理论荧光强度后,用FP法计算各元素在其定值下的最终强度,从而完成了FP法工作曲线。应用此虚拟合成单标工作曲线对多种标准样品进行测定,证明该工作曲线可用于各种类型的铁基合金的分析。  相似文献   

5.
应用基本参数(FP)法虚拟合成标样制作了X射线荧光光谱法(XRFS)测定不同类型的镍基高温合金中18种合金元素和4种杂质元素的通用工作曲线。选择了最佳的仪器工作条件和合理的待测元素的分析线系,测定了9种元素受共存元素分析线重叠干扰的校正系数,用瑞利散射线扣除背景及通道材料的影响。在设定虚拟合成标样中各元素的含量,并算得在此设定值下的荧光强度后,用FP法计算各元素在其定值下的最终强度,从而完成了FP法工作曲线。应用此虚拟合成单标工作曲线对多种标准样品进行测定,证明该工作曲线可通用于各种类型的镍基高温合金的分析。  相似文献   

6.
地质样品中的铌、钽、锂、铍、铷、钨元素含量相差大,且同一样品中各元素含量差异也较大。如在原矿中的含量只有几十至几百μg/g,而在精矿中的含量则达到了百分之几至百分之几十,高含量样品中的铌钽元素在强酸性溶液中不稳定,极易水解,准确测定这些元素需要多种方法,分析过程繁琐。传统的分析方法过程复杂、难以实现同时测定多种元素。通过考察分解体系酸的用量选择、提取剂的选择、提取剂用量的选择、测定内标元素的选择,建立了混酸分解-电感耦合等离子体质谱法同时测定地质样品中铌、钽、锂、铍、铷、钨元素的测定方法。本文采用氢氟酸-硝酸-盐酸-高氯酸-硫酸分解样品,用3~4滴氢氟酸+ 5 %硫酸+ 5 %过氧化氢萃取体系代替常规有机酸(酒石酸等。)萃取体系。采用ICP -MS同时测定各含量段地质中铌、钽、锂、铍、铷、钨的不同含量。采用该方法测定国家一级标准物质 GBW07155、GBW07153 、GBW07185,结果表明,各元素的检测结果与认定值无显著性误差,精密度RSD(n=6)0.45%~4.05%,准确度?lgC (n=6)在-0.008%~0.009%之间,适用于地质样品中的铌、钽、锂、铍、铷、钨元素的测定。  相似文献   

7.
提出了用电感耦合等离子体原子发射光谱法测定钴铬钼合金中锰、铁、镍、钼、钨的含量。用盐酸和硝酸溶解样品,选择波长为216.556,257.610,204.598,259.940,207.911 nm 5条谱线依次作为测定镍、锰、钼、铁和钨的分析线。方法用于钴铬钼合金标准样品(C112X)分析,加标回收率在96.0%~105.0%之间,相对标准偏差(n=9)在1.1%~2.0%之间。  相似文献   

8.
应用火花源原子发射光谱法测定了铁素体不锈钢中低含量碳。在经试验优化的方法中提出了以下各要点:①模铸法取样,按模具高度下端1/3处截取样品,取得样品应无物理缺陷且其表面能不重叠地激发两点;②选用铣床对样品表面进行加工,并采用固定的仪器参数;③分析前用低碳样品先激发一次以清理电极;④选择156.1nm碳谱线作为分析线以避免铝的干扰;⑤对样品中高含量铬的干扰,用校正公式作校正;⑥为适应低含量碳的测定,制备了一套专用的光谱标样,供制作工作曲线用,其碳质量分数范围为0.0032%~0.0383%。按所提出的方法分析了4个低碳铁素体不锈钢样品,所得碳的测定值与高频燃烧红外吸收法的测定结果相符,测定值的相对标准偏差(n=11)均小于8%。  相似文献   

9.
样品经盐酸-硝酸(3+1)溶液溶解,高氯酸冒烟后,用氢化物发生-电感耦合等离子体原子发射光谱法测定钢中微量砷、锑和铋的含量。研究了介质的酸度、硼氢化钾的浓度对3种元素信号强度的影响,并考察了其他元素对3元素测量的化学干扰。选择波长为189.042,217.58,223.06nm的3条谱线依次作为测定砷、锑和铋的分析线。砷、锑和铋的检出限(3s/k)分别为0.48,3.5,2.0μg.L-1。应用此法测定2个标准样品(GSBH40064-93和BH4265)中3种元素的含量,测定值与标准值相一致。  相似文献   

10.
镱(172 Yb)、铪(178 Hf)、钽(181 Ta)、钨(182 W)四种稀土元素质量数均高于170,第一电离能分别为601、656、759、767kJ/mol,高于平均电离能486kJ/mol,属于难电离元素,且在土壤中含量较低。通过选择合适的消解体系,采用碰撞模式去除多原子离子干扰,选择193Ir内标校正基体干扰,建立了电热消解-电感耦合等离子体质谱法测定土壤中镱铪钽钨四种高能稀土元素的方法。4种元素校准曲线的线性均大于0.999,检出限在0.05~0.5μg/g,用土壤标准物质GSS-8、GSS-13进行验证,平均相对标准偏差(RSD)在3.2%~12.4%,加标回收率为88%~115%,各元素的测定值与标准值吻合。  相似文献   

11.
提出了电感耦合等离子体原子发射光谱法测定钛铁中钛、铝、硅、磷、铜和锰元素的含量。选择盐酸-硝酸水(3+1+4)溶液及硫酸(5+95)溶液溶解样品,选择波长为336.121,394.403,251.612,177.499,327.396,257.610 nm的6条谱线依次作为测定钛、铝、硅、磷、铜和锰的分析线;上述6种元素的检出限(3s/k)依次为0.006,0.01,0.008,0.1,0.005,0.001 mg·L-1。方法用于钛铁标准样品分析,测定值与认证值相一致,测定值的相对标准偏差(n=9)在0.25%~10%之间。  相似文献   

12.
电感耦合等离子体原子发射光谱法测定玻璃中总硫   总被引:1,自引:0,他引:1  
应用电感耦合等离子体原子发射光谱法(ICP-AES)测定了玻璃中总硫量。对测定条件,包括试样的溶解方法,分析谱线的选择,共存元素的光谱干扰及仪器的工作参数等作了系统研究。测定中选择了在紫外区的谱线(S 181.972 nm)作分析线可有效地避免了基体中大量钙的干扰。选取5件标准样品或已知样品按所提出方法各进行5次分析,算得方法的RSD值均小于1.5%,进行11次空白试验,算得方法的检出限(3S)为0.01 mg.L-1。通过对两件标准参考物质(NBS 89和GBW 03117)及一件已知样品的分析,验证了方法的准确度,所得测定结果与证书值或已知值相符。  相似文献   

13.
采用电感耦合等离子体原子发射光谱法测定粘结后的锂离子电池三元正极材料中痕量铁。取电极材料样品(0.200 0g)高温灼烧除碳、除氟,采用碳酸钠-硼酸(2+1)混合熔剂2g熔融样品。用基体匹配法制备工作曲线。选择233.280nm谱线作为铁的分析线,并采用背景干扰校正等方法来消除光谱及离子干扰。铁的质量分数在0.025%以内与其发射强度呈线性关系,检出限(3s)为0.000 6%。方法用于实样分析,测定值的相对标准偏差(n=11)为3.2%。用标准加入法做方法的回收试验,测得回收率在93.8%~108%之间。  相似文献   

14.
提出了电感耦合等离子体原子发射光谱法测定铸造铝合金中磷含量的方法。铸造铝合金称样0.500 0g,用硝酸(1+1)溶液12mL和氢氟酸4mL溶解。选择波长为213.618nm谱线作为测定磷的分析线。磷的质量浓度在4.00mg·L-1以内与其发射强度呈线性关系,方法的检出限(3s/k)为0.020mg·L-1。方法用于分析5个铸造铝合金标准物质,测定值与认定值相符,相对标准偏差(n=6)在0.43%~2.2%之间,回收率在94.0%~109%之间。  相似文献   

15.
提出了用电感耦合等离子体原子发射光谱法(ICP AES)测定铬矿中铁、铝、硅、镁和钙含量的方法。通过试验确定以混合熔剂碳酸钠-碳酸钾-硼砂质量比2比2比1熔融样品,熔块用硝酸(15+80)溶液浸取,分取部分试液按选定条件进行ICP-AES分析。选择393.37,251.61,271.44,396.15,279.55nm 5条谱线分别作为钙、硅、铁、铝及镁的分析线。用铬矿国家标准样品(BGBW 07201、GSBD 33001.3)制作标准曲线。按此方法对一种国家标准样品(GSBD 33001.2)和两种已知样品(Cr-2、72-Cr-01)进行分析。测定值与认定值基本一致,测得方法的回收率在99.0%~101.5%之间,相对标准偏差(n=6)在0.05%~0.78%之间。  相似文献   

16.
采用熔融片制样用X射线荧光光谱法对陶瓷、色料和釉物料中Na,Mg,Al,Si,P,S,K,Ca,Ti,Mn,Fe,Ba,Zr,Zn,Hf 15种元素进行了测定,用理论α系数校正基体效应。方法简便、快速、分析结果的准确度完全能满足上述物料分析的要求。还用纯化学试剂和标准样品按一定比例混合制备标准样品,弥补了色料和釉缺少标准或没有标样的困难。又对Zr和Hf元素分析线进行了选择,用ZrLα和HfLβ1作为分析线,而不采用ZrKα,不仅使制备的熔片达到ZrLα线的饱和厚度,使分析结果的准确度和重现性好,而且还消除了ZrKα的谱线对HfLβ1分析线的干扰。  相似文献   

17.
用5mL氟化氢铵(50g/L)、10mL盐酸、5mL硝酸、5mL高氯酸分解0.1g样品,盐酸(3%,V/V)为测定介质,定容在250mL容量瓶中,直接用电感耦合等离子体原子发射光谱法测定铅锌选矿流程原尾矿中的铅、锌、铜3种元素。根据分析线的选择原则,结合待测元素的检测范围,选择无干扰、峰形对称、灵敏度适中的谱线Pb 220.353nm、Zn 213.856nm、Cu 324.754nm作为分析线。各元素的质量浓度在一定范围内与其发射强度呈线性,校准曲线的线性相关系数均大于0.999 9,方法中各元素检出限为0.066~0.51ng/mL。方法经国家标准物质分析验证,测定值与认定值相符。按照实验方法测定铅锌选矿流程原尾矿中铅、锌、铜,测试结果与火焰原子吸收光谱法测定结果一致。  相似文献   

18.
建立电感耦合等离子体原子发射光谱法测定γ-钛铝铌合金中铝、铌、钨、硼的分析方法。采用10 mL盐酸+2 mL氢氟酸+1 mL硝酸消解γ-钛铝铌合金,以基体匹配法建立系列校准曲线,选择铝394.401 nm、铌269.706 nm、钨207.912 nm、硼249.772 nm为分析线,采用左右两点离峰背景扣除方法校正背景光谱的重叠干扰和漂移干扰,各元素质量分数的线性范围分别为:铝30%~40%,铌10%~25%,钨0.015%~1.0%,硼0.003%~0.10%。测定结果的相对标准偏差均不大于4%(n=10),加标回收率为93%~108%。该方法能够满足Ti-(30~40)Al-(15~20)Nb-x W-y B中主量铝、铌和微量钨、硼的同时、快速检测需求。  相似文献   

19.
仿真饰品样品用模拟人体环境的酸性汗液萃取60min后,采用电感耦合等离子体原子发射光谱法测定其中砷、钡、镉、钴、铬、汞、镍、铅、锑和硒的迁移量。试验选择波长为193.759,233.527,214.438,228.616,267.716,194.227,232.003,220.353,206.833,196.090nm的10条谱线依次作为测定砷、钡、镉、钴、铬、汞、镍、铅、锑和硒的分析线。方法的检出限(3sb/k)在0.002~0.06mg.L-1之间,测定下限(15sb/k)在0.01~0.3mg.L-1之间。方法用于仿真饰品的分析,回收率在88.0%~100%之间,测定值的相对标准偏差(n=7)在3.1%~9.8%之间。  相似文献   

20.
采用氢氟酸–硝酸溶解铌铪合金样品,建立电感耦合等离子体原子发射光谱法(ICP–AES)测定铌铪合金中铪、钛、锆、钨、钽元素的分析方法。铪、钛、锆、钨、钽的分析谱线分别为232.247,368.519,339.197,224.876,248.870nm,通过基体匹配法消除基体铌的干扰。在优化条件下对铌铪合金样品进行测定,各元素的质量浓度在其线性范围内与其光谱强度呈良好的线性关系,线性相关系数大于0.998,定量限为0.003 6%~0.007 4%。测定结果的相对标准偏差(n=11)小于1%,回收率为96.8%~105.0%。该方法快速、准确,可以满足实际生产中铌铪合金样品的测定要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号