首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodiesel is a fatty acid alkyl ester that can be derived from any vegetable oil or animal fat via the process of transesterification. It is a renewable, biodegradable, and nontoxic fuel. In this paper, we have evaluated the efficacy of a transesterification process for rapeseed oil with methanol in the presence of an enzyme and tert-butanol, which is added to ameliorate the negative effects associated with excess methanol. The application of Novozym 435 was determined to catalyze the transesterification process, and a conversion of 76.1% was achieved under selected conditions (reaction temperature 40 °C, methanol/oil molar ratio 3:1, 5% (w/w) Novozym 435 based on the oil weight, water content 1% (w/w), and reaction time of 24h). It has also been determined that rapeseed oil can be converted to fatty acid methyl ester using this system, and the results of this study contribute to the body of basic data relevant to the development of continuous enzymatic processes.  相似文献   

2.
We studied the production of fatty acid ethyl esters from castor oil using n-hexane as solvent and two commercial lipases, Novozym 435 and Lipozyme IM, as catalysts. For this purpose, a Taguchi experimental design was adopted considering the following variables: temperature (35–65°C), water (0–10 wt/wt%), and enzyme (5–20 wt/wt%) concentrations and oil-to-ethanol molar ratio (1∶3 to 1∶10). An empirical model was then built so as to assess the main and cross-variable effects on the reaction conversion and also to maximize biodiesel production for each enzyme. For the system containing Novozym 435 as tatalyst the maximum conversion obtained was 81.4% at 65°C, enzyme concentration of 20 wt/wt%, water concentration of 0 wt/wt%, and oil-to-ethanol molar ratio of 1∶10. When the catalyst was Lipozyme IM, a conversion as high as 98% was obtained at 65°C, enzyme concentration of 20 wt/wt%, water concentration of 0 wt/wt%, and oil-to-ethanol molar ratio of 1∶3.  相似文献   

3.
In this work, we describe the optimization of the ethanolysis of soybean oil by the enzyme Lipozyme™ TL-IM in the lipase-catalyzed biodiesel synthesis and the improvement of the enzyme stability over repeated batches. The studied process variables were: reaction temperature, substrate molar ratio, enzyme content, and volume of added water. Fractional factorial design was used to analyze the variables so as to select those with higher influence on the reaction and then perform a central composite design to find the optimal reaction conditions. The optimal conditions found were: temperature, 26 °C; substrate molar ratio, 7.5:1 (ethanol/oil); enzyme content, 25% in relation to oil weight; and added water, 4% in relation to oil weight. Under these conditions, the yield conversion obtained was 69% in 12 h. The enzyme stability assessment in repeated batches was carried out by washing the immobilized enzyme with different solvents (n-hexane, water, ethanol, and propanol) after each batch. In the treatment with n-hexane, around 80% of the enzyme activity still remains after seven cycles of synthesis, suggesting its economical application on biodiesel production.  相似文献   

4.
The objective of this work was to study the synthesis of ethyl esters via esterification of soybean oil deodorizer distillate with ethanol, using solid acid catalysts and commercial immobilized lipases, in a solvent-free system. Three commercially immobilized lipases were used, namely, Lipozyme RM-IM, Lipozyme TL-IM, and Novozym 435, all from Novozymes. We aimed for optimum reaction parameters: temperature, enzyme concentration, initial amount of ethanol, and its feeding technique to the reactor (stepwise ethanolysis). Reaction was faster with Novozym 435. The highest conversion (83.5%) was obtained after 90 min using 3 wt.% of Novozym 435 and two-stage stepwise addition of ethanol at 50°C. Four catalysts were also tested: zeolite CBV-780, SAPO-34, niobia, and niobic acid. The highest conversion (30%) was obtained at 100°C, with 3 wt.% of CBV-780 after 2.5 h. The effects of zeolite CBV 780 concentration were studied, resulting in a conversion of 49% using 9 wt.% of catalyst.  相似文献   

5.
Recently, sugar polymers have been considered for use as biomaterials in medical applications. These biomaterials are already used extensively in burn dressings, artificial membranes, and contact lenses. In this study, we investigated the optimum conditions under which the enzymatic synthesis of sorbitan methacrylate can be affected using Novozym 435 in t-butanol from sorbitan and several acyl donors (ethyl methacrylate, methyl methacrylate, and vinyl methacrylate). The enzymatic synthesis of sorbitan methacrylate, catalyzed by Novozym 435 in t-butanol, reached an approx 68% conversion yield at 50 g/L of 1,4-sorbitan, 5% (w/v) of enzyme content, and a 1∶5 molar ratio of sorbitan to ethyl methacrylate, with a reaction time of 36 h. Using methyl methacrylate as the acyl donor, we achieved a conversion yield of approx 78% at 50 g/L of 1,4-sorbitan, 7% (w/v) of enzyme content, at a 1∶5 molar ratio, with a reaction time of 36 h. Sorbitan methacrylate synthesis using vinyl methacrylate as the acyl donor was expected to result in a superior conversion yield at 3% (w/v) of enzyme content, and at a molar ratio greater than 1∶2.5. Higher molar ratios of acyl donor resulted in more rapid conversion rates. Vinyl methacrylate can be applied to obtain higher yields than are realized when using ethyl methacrylate or methyl methacrylate as acyl donors in esterification reactions catalyzed by Novozym 435 in organic solvents. Enzyme recycling resulted in a drastic reduction in conversion yields.  相似文献   

6.
The enzymatic alcoholysis of soybean oil with methanol and ethanol was investigated using a commercial, immobilized lipase (Lipozyme RMIM). The effect of alcohol (methanol or ethanol), enzyme concentration, molar ratio of alcohol to soybean oil, solvent, and temperature on biodiesel production was determined. The best conditions were obtained in a solvent-free system with ethanol/oil molar ratio of 3.0, temperature of 50 degrees C, and enzyme concentration of 7.0% (w/w). Three-step batch ethanolysis was most effective for the production of biodiesel. Ethyl esters yield was about 60% after 4 h of reaction.  相似文献   

7.
辛嘉英 《分子催化》2011,25(3):262-268
对无溶剂体系中阿魏酸的转酯化疏水改性进行了研究,确立了减压反应器(0.001 MPa)中Novozym 435脂肪酶催化阿魏酸乙酯和油醇进行转酯化反应合成新型抗氧化剂阿魏酸油醇酯的方法.发现水活度(aw)明显影响转酯反应,阿魏酸油醇酯产率在aw<0.01-0.75范围内随着水活度的增加而降低,推测底物阿魏酸乙酯和产物阿...  相似文献   

8.
固定化脂肪酶催化高酸废油脂酯交换生产生物柴油   总被引:42,自引:0,他引:42  
陈志锋  吴虹  宗敏华 《催化学报》2006,27(2):146-150
 探讨了固定化脂肪酶Novozym 435催化高酸废油脂与乙酸甲酯酯交换生产生物柴油. Novozym 435能催化高酸废油脂与乙酸甲酯的酯交换反应,反应24 h后甲酯产率为77.5%,但该值大大低于以精制玉米油为原料时的甲酯产率(86.2%). 系统研究了反应体系中的水、游离脂肪酸和乙酸对反应的影响. 当反应体系中的水含量低于0.05%时,水对酶反应速率和甲酯产率影响甚小,而水含量高于0.05%时,酶反应速率和甲酯产率随着水含量的增加而降低. 游离脂肪酸对反应有较大影响,甲酯产率随着游离脂肪酸含量的增加而急剧下降. 乙酸甲酯与游离脂肪酸反应产生的副产物乙酸是导致甲酯产率显著下降的原因. 在反应体系中添加适量(油重的10%)的有机碱三羟甲基氨基甲烷或三乙胺可有效提高酶促高酸废油脂的酯交换反应速率和甲酯产率,使反应12 h后的甲酯产率分别达到85.9%和80.8%; 碱的加入还提高了酶的操作稳定性,添加有机碱三羟甲基氨基甲烷或三乙胺可使反应10批次后Novozym 435的相对酶活力分别由对照值86%提高到97%和93%.  相似文献   

9.
The synthesis of isoamyl laurate and isoamyl stearate was studied in supercritical carbon dioxide with three lipases, Novozym 435, Lipolase 100T, and Candida rugosa. The maximum conversion of 37% and 53%, respectively for isoamyl laurate and isoamyl stearate was obtained when Novozym 435 was used. The effect of various parameters such as molar ratio of alcohol to acid, presence of water, time and temperature was investigated. An optimum temperature of 40–45°C was observed for all reactions. The kinetics of reactions was fast and equilibrium was achieved in 2–3 h. Although the presence of excess alcohol did not reduce conversion, excess water reduced conversion significantly.  相似文献   

10.
The aim of this work is to report the production of mono- and diglycerides from olive oil at ambient condition and in pressurized n-butane as solvent medium. For this purpose, a commercial immobilized lipase (Novozym 435) was employed as catalyst and sodium (bis-2-ethyl-hexyl) sulfosuccinate (Aerosol-OT or AOT) as surfactant. The experiments were conducted in batch mode varying the temperature, pressure, and AOT concentration. Results showed that lipase-catalyzed glycerolysis either with compressed n-butane or in solvent-free system with AOT as surfactant might be a potential alternative route to conventional methods, as high contents of reaction products, especially monoglycerides (∼ 60 wt.%), were achieved at mild temperature and pressure with a relatively low solvent to substrates mass ratio (4:1) in short reaction times (2 h).  相似文献   

11.
This work investigated the production of fatty acid ethyl esters (FAEEs) from soybean oil using n-hexane as solvent and two commercial lipases as catalysts, Novozym 435 and Lipozyme IM. A Taguchi experimental design was adopted considering the variables temperature (35–65°C), addition of water (0–10 wt/wt%), enzyme (5–20 wt/wt%) concentration, and oil-to-ethanol molar ratio (1:3–1:10). It is shown that complete conversion in FAEE is achieved for some experimental conditions. The effects of process variables on reaction conversion and kinetics of the enzymatic reactions are presented for all experimental conditions investigated in the factorial design.  相似文献   

12.
With increasing demand for perfumes, flavors, beverages, and pharmaceuticals, the various associated industries are resorting to different approaches to enhance yields of desired compounds. The use of fixed-bed biocatalytic reactors in some of the processes for making fine chemicals will be of great value because the reaction times could be reduced substantially as well as high conversion and yields obtained. In the current study, a continuous-flow packed-bed reactor of immobilized Candida antarctica lipase B (Novozym 435) was employed for synthesis of various geraniol esters. Optimization of process parameters such as biocatalyst screening, effect of solvent, mole ratio, temperature and acyl donors was studied in a continuous-flow packed-bed reactor. Maximum conversion of ~ 87% of geranyl propionate was achieved in 15 min residence time at 70 °C using geraniol and propionic acid with a 1:1 mol ratio. Novozym 435 was found to be the most active and stable biocatalyst among all tested. Ternary complex mechanism with propionic acid inhibition was found to fit the data.  相似文献   

13.
向丽  程健 《燃料化学学报》2008,36(1):111-114
超临界甲醇中的酯化和酯交换反应是利用植物油、动物油或废油脂制备生物柴油的新工艺.它的最大特点是不需要添加催化剂,超临界甲醇既是反应媒介,又是反应物.  相似文献   

14.
The enzymatic preparation of biodiesel has been hampered by the lack of suitable solvents with desirable properties such as high lipase compatibility, low cost, low viscosity, high biodegradability, and ease of product separation. Recent interest in using ionic liquids (ILs) as advanced reaction media has led to fast reaction rates and high yields in the enzymatic synthesis of biodiesel. However, conventional (i.e., cation-anion paired) ILs based on imidazolium and other quaternary ammonium salts remain too expensive for wide application at industrial scales. In this study, we report on newly-synthesized eutectic ILs derived from choline acetate or choline chloride coupled with biocompatible hydrogen-bond donors, such as glycerol. These eutectic solvents have favorable properties including low viscosity, high biodegradability, and excellent compatibility with Novozym(?) 435, a commercial immobilized Candida antarctica lipase B. Furthermore, in a model biodiesel synthesis system, we demonstrate high reaction rates for the enzymatic transesterification of Miglyol(?) oil 812 with methanol, catalyzed by Novozym(?) 435 in choline acetate/glycerol (1:1.5 molar ratio). The high conversion (97%) of the triglyceride obtained within 3 h, under optimal conditions, suggests that these novel eutectic solvents warrant further exploration as potential media in the enzymatic production of biodiesel.  相似文献   

15.
大麻籽油合成生物柴油   总被引:9,自引:0,他引:9  
大麻籽油;甲醇;甲酯化;生物柴油;酯交换  相似文献   

16.
In this study, we evaluate the effects of various reaction factors, including pressure, temperature, agitation speed, enzyme concentration, and water content to increase biodiesel production. In addition, biodiesel was produced from various oils to establish the optimal enzymatic process of biodiesel production. Optimal conditions were determined to be as follows: pressure 130 bar, temperature 45 °C, agitation speed 200 rpm, enzyme concentration 20%, and water contents 10%. Among the various oils used for production, olive oil showed the highest yield (65.18%) upon transesterification. However, when biodiesel was produced using a batch system, biodiesel conversion yield was not increased over 65%; therefore, a stepwise reaction was conducted to increase biodiesel production. When a reaction medium with an initial concentration of methanol of 60 mmol was used and adjusted to maintain this concentration of methanol every 1.5 h during biodiesel production, the conversion yield of biodiesel was 98.92% at 6 h. Finally, reusability was evaluated using immobilized lipase to determine if this method was applicable for industrial biodiesel production. When biodiesel was produced repeatedly, the conversion rate was maintained at over 85% after eight reuses.  相似文献   

17.
The synthesis of monocaprin, monolaurin, and monomyristin in a solvent-free system was conducted by mixing a commercial immobilized lipase with the organic reactants (glycerol and fatty acids) in a 20-mL batch reactor with constant stirring. The effects of temperature, fatty acid/glycerol molar ratio, and enzyme concentration on the reaction conversion were determined. The addition of molecular sieves in the assays of monomyristin synthesis was also evaluated. The reactions were carried out for 5 to 6 h and the nonpolar phase was analyzed by gas chromatography. The best results in terms of selectivity and conversion (defined as the percentage of fatty acid consumed) were achieved when the stoichiometric amount of reagents (molar ratio=1) and 9% (w/w) commercial enzyme were used and the reaction was performed at 60°C. The addition of molecular sieves did not improve the synthesis of monomyristin. Conversions as high as 80%, with monoglycerides being the major products, were attained. After 5 h of reaction, the concentration of monoglyceride was about twice that of diglyceride, and only trace amounts of triglyceride were found. The results illustrate the technical possibility of producing medium chain monoglycerides in a solvent-free medium using a simple batch reactor.  相似文献   

18.
柴油溶剂中脂肪酶催化高酸值废油脂酯化制备生物柴油   总被引:5,自引:1,他引:4  
采用0#柴油作为反应溶剂,利用固定化脂肪酶催化高酸值废油脂与甲醇酯化反应制备生物柴油。来源于Candida antarctica的固定化脂肪酶Novozym435在0#柴油溶剂中具有极高的催化活性。以酸价高达157×10-3的废油脂为原料,废油脂质量比10%的Novozym435,甲醇与废油脂初始摩尔比2∶1,0#柴油与废油脂质量比5∶1,摇床摇速170r/min,50℃下反应2h甲酯化率可达95.10%。0#柴油作为反应溶剂有效地溶解了高酸值废油脂和甲醇,降低了反应体系的黏度和消除了甲醇对Novozym435的负面影响,提高了Novozym435的稳定性。同时,0#柴油溶剂对未脱胶废油脂中残留的对脂肪酶有害的磷脂等胶类物质具有一定的稀释作用。该工艺省却了溶剂蒸馏的繁琐工序,直接得到脂肪酸甲酯和石化柴油的混合燃料。  相似文献   

19.
A semi-pilot continuous process (SPCP) for enzymatic biodiesel synthesis utilizing near-critical carbon dioxide (NcCO2) as the reaction medium was developed with the aim of reducing the reaction time and alleviating the catalyst inhibition by methanol. Biodiesel synthesis was evaluated in both lab-scale and semi-pilot scale reactors (batch and continuous reactors). In a SPCP, the highest conversion (~99.9 %) in four and a half hours was observed when three-step substrate (methanol) addition (molar ratio [oil/methanol]?=?1:1.3) was used and the reaction mixture containing enzyme (Lipozyme TL IM, 20 wt.% of oil) was continuously mixed (agitation speed?=?300 rpm) at 30 °C and 100 bar in a CO2 environment. The biodiesel produced from canola oil conformed to the fuel standard (EU) even without additional downstream processing, other than glycerol separation and drying.  相似文献   

20.
Biodiesel, an alternative diesel fuel made from renewable biological resources, has become more and more attractive recently. Combined use of two immobilized lipases with complementary position specificity instead of one lipase is a potential way to significantly reduce cost of lipase-catalyzed biodiesel production. In this study, the process of biodiesel production from lard catalyzed by the combined use of Novozym435 (non-specific) and Lipozyme TLIM (1,3-specific) was optimized by response surface methodology. The optimal reaction conditions were 0.04 of amount of lipase/oil (w/w), 0.49 of proportion of Novozym435/total lipases (w/w), 0.55 of quantity of tert-butanol/oil (v/v), 5.12 of quantity of methanol/oil (mol/mol), and 20 h of reaction time, by which 97.2% of methyl ester (ME) yield was attained, very close to the predicted value (97.6%). This optimal reaction condition could be true of other similar reactions with plant and animal oil resources; their ME yield could be higher than 95%. The lipases regenerated by washing with organic solvent after each reaction cycle could be continuously reused for 20 cycles without any loss of activity, exhibiting very high manipulation stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号