首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we investigate the dynamical behaviour of entanglement in terms of concurrence in a bipartite system subjected to an external magnetic field under the action of dissipative environments in the extended Werner-like initial state. The interesting phenomenon of entanglement sudden death as well as sudden birth appears during the evolution process. We analyse in detail the effect of the purity of the initial entangled state of two qubits via Heisenberg XY interaction on the apparition time of entanglement sudden death and entanglement sudden birth. Furthermore, the conditions on the conversion of entanglement sudden death and entanglement sudden birth can be generalized when the initial entangled state is not pure. In particular, a critical purity of the initial mixed entangled state exists, above which entanglement sudden birth vanishes while entanglement sudden death appears. It is also noticed that stable entanglement, which is independent of different initial states of the qubits (pure or mixed state), occurs even in the presence of decoherence. These results arising from the combination of the extended Werner-like initial state and dissipative environments suggest an approach to control and enhance the entanglement even after purity induced sudden birth, death and revival.  相似文献   

2.
提出了两套三粒子纠缠态的纯化方案.第一个方案选择部分纠缠GHZ态作为量子通道,利用具有一个控制位和一个靶位的非局域控制非门操作和采用集体么正操作及适当地制备三粒子A,B和C的初始态,可以以最佳几率2|β|2获得最大三粒子纠缠态.第二个方案选择EPR对作为量子通道,通过利用具有一个控制位和两个靶位的非局域控制非门操作和采用集体么正操作及适当地制备三粒子A,B和C的初始态,可以以与第一个方案相同的几率获得最大三粒子纠缠态.两个方案都可以推广到N粒子纠缠态的纯化.  相似文献   

3.
We analyze a controllable generation of maximally entangled mixed states of a circuit containing two-coupled superconducting charge qubits. Each qubit is based on a Cooper pair box connected to a reservoir electrode through a Josephson junction. Illustrative variational calculations were performed to demonstrate the effect on the two-qubits entanglement. At sufficiently deviation between the Josephson energies of the qubits and/or strong coupling regime, maximally entangled mixed states at certain instances of time is synthesized. We show that entanglement has an interesting subsequent time evolution, including the sudden death effect. This enables us to completely characterize the phenomenon of entanglement sharing in the coupling of two superconducting charge qubits, a system of both theoretical and experimental interest.  相似文献   

4.
We investigate the entanglement dynamics of a system composed of two non-interacting qubits,A and B.A third qubit,C,only has the Dzyaloshinskii-Moriya(DM)spin-orbit interaction with qubit B.We find that the DM interaction can induce the entanglement sudden death(ESD)of the system qubits A and B,andproperly mixing the initial state of the system and adjusting the state of qubit C are two effective methods of controlling ESD.  相似文献   

5.
An experimental scheme is suggested that permits a direct measure of entanglement in a two-qubit cavity system. It is realized in the cavity-QED technology utilizing atoms as flying qubits. With this scheme we generate two different measures of entanglement, namely logarithmic negativity and concurrence. The phenomenon of sudden death entanglement (ESD) in a bipartite system subjected to dissipative environment is examined. We show that the sudden death time of the entangled states depends on the initial preparation of the entangled state and the temperature of the reservoir.  相似文献   

6.
We study entanglement teleportation in the two‐qubit XX Heisenberg model with pure phase decoherence taken into account. For some initial entangled states, pure phase decoherence has no effect on the teleported entanglement, while for others pure phase decoherence has a pronounced effect. In addition, entanglement sudden death happens in the latter case.  相似文献   

7.
We study a generalized double Jaynes–Cummings (JC) model where two entangled pairs of two-level atoms interact indirectly. We show that there exist initial states of the qubit system so that two entangled pairs are available at all times. In particular, the minimum entanglement in the pairs as a function of the initial state is studied. Finally, we extend our findings to a model consisting of multi-mode atom–cavity interactions. We use a non-Markovian quantum state diffusion (QSD) equation to obtain the steady-state density matrix for the qubits. We show that the multi-mode model also displays dynamical preservation of entanglement.  相似文献   

8.
Characterizing entanglement in all but the simplest case of a two qubit pure state is a hard problem, even understanding the relevant experimental quantities that are related to entanglement is difficult. It may not be necessary, however, to quantify the entanglement of a state in order to quantify the quantum information processing significance of a state. It is known that the fully entangled fraction has a direct relationship to the fidelity of teleportation maximized under the actions of local unitary operations. In the case of two qubits we point out that the fully entangled fraction can also be related to the fidelities, maximized under the actions of local unitary operations, of other important quantum information tasks such as dense coding, entanglement swapping and quantum cryptography in such a way as to provide an inclusive measure of these entanglement applications. For two qubit systems the fully entangled fraction has a simple known closed-form expression and we establish lower and upper bounds of this quantity with the concurrence. This approach is readily extendable to more complicated systems.  相似文献   

9.
We study the asymptotic entanglement of three identical qubits under the action of a Markovian open system dynamics that does not distinguish them. We show that by adding a completely depolarized qubit to a special class of two-qubit states, by letting them reach the asymptotic state and by finally eliminating the added qubit, can provide more entanglement than by direct immersion of the two qubits within the same environment.  相似文献   

10.
嵇英华  刘咏梅  王资生 《中国物理 B》2011,20(7):70304-070304
The entanglement evolution of the coupled qubits interacting with a non-Markov environment is investigated in terms of concurrence.The results show that the entanglement of the quantum systems depends not only on the initial state of the system but also on the coupling between the qubit and the environment.For the initial state (|00 ± |11) /21/2,the coupled qubits will always been in the maximum entangled state under an asymmetric coupling.For the initial state (|01 ± |10) /21/2,in contrast,the entangling degree of the coupled qubits is always equal to unity and does not depend on the evolving time under the symmetric coupling.We find that the stronger the interaction between the qubits is,the better the struggle against the entanglement sudden death is.  相似文献   

11.
The entanglement evolution of two qubits in local, two-sided non-Markovian pure dephasing channels is investigated. It is found that for the two-sided pure dephasing channel case, when the qubits are initially prepared in a general class of states, whether pure or mixed, the entanglement can be expressed as the products of initial entanglement and the channels? action on the maximally entangled state. This provide us a good approximation to characterize the entanglement dynamics of arbitrary states to some extent.  相似文献   

12.
本文利用绝热近似方法和精确对角化方法研究三量子比特Dicke模型中的纠缠动力学.处于两种典型的纠缠态GHZ态和W态上的量子比特在时间演化过程中与辐射光场发生强耦合作用,在各种子系统间产生纠缠,通过分析这些纠缠的演化特性发现初始GHZ态的三体纠缠鲁棒性比W态强,这与旋波近似结论一致.与旋波近似下结果不同的是,两种态中任意一对量子比特间的纠缠都随时间演化到几乎为零,而三体纠缠随时间周期演化,且纠缠程度相对较强,说明系统中的强耦合作用通过抑制量子比特中的对纠缠来支持三体纠缠.  相似文献   

13.
单传家  刘继兵  陈涛  刘堂昆  黄燕霞  李宏 《物理学报》2010,59(10):6799-6805
研究了初态为X态时Tavis-Cummings模型中具有偶极相互作用两原子的纠缠演化特性,在演化过程中,同时号码出现了两原子的纠缠突然死亡(ESD)与突然产生(ESB)两种有趣的现象.详细分析了两原子初始态的纯度、偶极相互作用、光场粒子数对这两种现象出现时间的影响,进一步给出了初始为混态时ESB与ESD的转换条件.计算结果表明,上述系统参量对两原子的纠缠演化、ESB与ESD有重要的影响,偶极相互作用会改变纠缠度的振荡周期,使出现ESD的时间间隔减少;随着初始两原子纠缠纯度的增大,纠缠突然产生以及纠缠突然死亡存在的时间缩短,并且可以提高两原子之间的纠缠;对于特殊的初态,产生了纠缠不变性以及固定的两原子纠缠,该定值受两原子初始状态的纯度控制。  相似文献   

14.
Classical correlation (CC), quantum discord (QD) and entanglement (QE) of two qubits in one-side and two-side decoherence models are investigated. The sudden change of quantum discord (DSC) as well as classical correlation and sudden death of entanglement (ESD) are found. It is proved that QE (QD) presents no sudden change (sudden death). We prove that, for nonzero occupation number of the reservoir, QE must suffer sudden death; For zero occupation number and X-form initial states, we obtain the states which are robust and the states which experience sudden death. It is verified that if DSC and ESD occur under one-side decoherence, then it must appear in the two-side decoherence, while the reverse does not hold. We obtain the boundaries of CC-QE plane and QD-QE plane, and give the state possessing maximal amount of CC (QD) for a given amount of QE.  相似文献   

15.
In this paper, we study a Hamiltonian system constituted by two coupled two-level atoms (qubits) interacting with a nonlinear generalized cavity field. The nonclassical two-qubit correlation dynamics are investigated using Bures distance entanglement and local quantum Fisher information under the influences of intrinsic decoherence and qubit–qubit interaction. The effects of the superposition of two identical generalized coherent states and the initial coherent field intensity on the generated two-qubit correlations are investigated. Entanglement of sudden death and sudden birth of the Bures distance entanglement as well as the sudden changes in local Fisher information are observed. We show that the robustness, against decoherence, of the generated two-qubit correlations can be controlled by qubit–qubit coupling and the initial coherent cavity states.  相似文献   

16.
Modeling the qubit by a two-level semiclassical detector coupled to a massless scalar field, we investigate how the Unruh effect affects the nonlocality and entanglement of two-qubit and three-qubit states when one of the entangled qubits is accelerated. Two distinct differences with the results of free field model in non-inertial frames are (i) for the two-qubit state, the CHSH inequality cannot be violated for sufficiently large but finite acceleration, furthermore, the concurrence will experience “sudden death”; and (ii) for the three-qubit state, not only does the entanglement vanish in the infinite acceleration limit, but also the Svetlichny inequality cannot be violated in the case of large acceleration.  相似文献   

17.
We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement between two qubits arises in the course of evolution according to the Jaynes-Cummings type interaction with nonclassical radiation field. We also investigate the relation between entanglement and purity of qubit subsystem. We show that different photon statistics have different effects on the dynamical behavior of the qubit subsystem. When the qubits are initially prepared in the maximally mixed and separable state, for coherent state field we cannot find entanglement between two qubits; for squeezed state field entanglement between two qubits exists in several short period of time; for even and odd coherent state fields of large photon number, the dynamical behavior of the entanglement between two qubits shows collapse and revival phenomenon. For odd coherent state field of small photon number, the entanglement with both qubits initially prepared in maximally mixed state can be stronger than that with both qubits initially prepared in pure states. For fields of small photon number, the entanglement strongly depends on the states they are initially prepared in. For coherent state field, and odd and even coherent state fields of large photon number, the entanglement only depends on the purity of the initial state of qubit subsystem. We also show that during the evolution the unentangled state may be purer than the entangled state, and the maximum degree of entanglement may not occur at the time when the qubit subsystem is in the purist state.  相似文献   

18.
We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement between two qubits arises in the course of evolution according to the Jaynes-Cummings type interaction with nonclassical radiation field. We also investigate the relation between entanglement and purity of qubit subsystem. We show that different photon statistics have different effects on the dynamical behavior of the qubit subsystem. When the qubits are initially prepared in the maximally mixed and separable state, for coherent state field we cannot find entanglement between two qubits; for squeezed state field entanglement between two qubits exists in several short period of time; for even and odd coherent state fields of large photon number, the dynamical behavior of the entanglement between two qubits shows collapse and revival phenomenon. For odd coherent state field of small photon number, the entanglement with both qubits initially prepared in maximally mixed state can be stronger than that with both qubits initially prepared in pure states. For fields of small photon number, the entanglement strongly depends on the states they are initially prepared in. For coherent state field, and odd and even coherent state fields of large photon number, the entanglement only depends on the purity of the initial state of qubit subsystem. We also show that during the evolution the unentangled state may be purer than the entangled state, and the maximum degree of entanglement may not occur at the time when the qubit subsystem is in the purist state.  相似文献   

19.
The evolution of entanglement decoherence is investigated for a coupled superconducting qubit under non-Markovian environment by utilizing a commensal entanglement degree. The results show that, owing to the memory feedback effect of environment, the entanglement degree of the coupled qubits at the thermal equilibrium always monotonously tends to zero so that entanglement sudden death occurs briefly in the non-Markovian process. Different from the Markovian process, stronger the dissipation is, faster the entanglement sudden death is. We find that, furthermore, the interaction between the qubits results generally in reduction of entanglement degree in the quantum system. With some special initial states or initial phase angles, however, the influence of the interaction between qubits on the system entanglement degree can be avoided.  相似文献   

20.
We consider a system of three uncoupled entangled qubits undergoing a decoherence process (DP) induced by a classical environmental noise portrayed by a Gaussian distributed fluctuating field with either Ornstein–Uhlenbeck (OU) or Gaussian (G) autocorrelation function. The impacts of such a DP on the entanglement of the qubits are analyzed in detail when they are initialized either in the GHZ- or W-type states and interact with the fluctuating field in three different scenarios namely, common, independent and mixed environment(s). We found that: (i) the way the qubits interact with the noise as well as their initial state play an important role towards the protection of entanglement; (ii) there are optimal parameters which permit to delay or totally avoid the disentanglement of the qubits; (iii) irrespective of the qubit-noise coupling (QNC) scenario and the initial prepared state considered, the OU noise is more injurious to the survivorship of entanglement than the G one. Specifically, we show that, irrespective of the QNC scenario and the character of the noise considered, the DP disentangles the qubits more quickly when they are initialized in the W-type states than in the GHZ-type one. Furthermore, we show that when the initial state of the qubits is considered to be a W-type state, the disentanglement occurs more rapidly in the common environment (CE) scenario followed by the mixed environments (MEs) scenario than in the independent environments (IEs) one. However, the situation is completely reversed when a GHZ-type state is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号