首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The influence of hydrophilic silica nanoparticles on the emulsification of a triglyceride oil (Miglyol812) in the presence of charged surfactants (lecithin or oleylamine) and the long term stability of the resultant oil-in-water emulsions are reported. A synergistic effect of nanoparticles and surfactants in improving emulsification and stability to coalescence is evident only when the silica nanoparticles are initially added to the oil phase. When nanoparticles are included from the water phase, no synergistic stabilisation was observed due to electrostatic bridging or unfavourable attachment due to the repulsive electrostatic and hydration forces. Free energies of adsorption for silica nanoparticles at the oil-water interface calculated from experimentally determined interfacial tensions and three phase contact angles can be correlated to long-term emulsion stability only when silica is added from oil phase.  相似文献   

2.
The stability and rheology of tricaprylin oil-in-water emulsions containing a mixture of surface-active hydrophilic silica nanoparticles and pure nonionic surfactant molecules are reported and compared with those of emulsions stabilized by each emulsifier alone. The importance of the preparation protocol is highlighted. Addition of particles to a surfactant-stabilized emulsion results in the appearance of a small population of large drops due to coalescence, possibly by bridging of adsorbed particles. Addition of surfactant to a particle-stabilized emulsion surprisingly led to increased coalescence too, although the resistance to creaming increased mainly due to an increase in viscosity. Simultaneous emulsification of particles and surfactant led to synergistic stabilization at intermediate concentrations of surfactant; emulsions completely stable to both creaming and coalescence exist at low overall emulsifier concentration. Using the adsorption isotherm of surfactant on particles and the viscosity and optical density of aqueous particle dispersions, we show that the most stable emulsions are formed from dispersions of flocculated, partially hydrophobic particles. From equilibrium contact angle and oil-water interfacial tension measurements, the calculated free energy of adsorption E of a silica particle to the oil-water interface passes through a maximum with respect to surfactant concentration, in line with the emulsion stability optimum. This results from a competition between the influence of particle hydrophobicity and interfacial tension on the magnitude of E.  相似文献   

3.
Using a range of complementary experiments, a detailed investigation into the behavior of dodecane-water emulsions stabilized by a mixture of silica nanoparticles and pure cationic surfactant has been made. Both emulsifiers prefer to stabilize o/w emulsions. At high pH, particles are ineffective emulsifiers, whereas surfactant-stabilized emulsions become increasingly stable to coalescence with concentration. In mixtures, no emulsion phase inversion occurs although synergism between the emulsifiers leads to enhanced stability at either fixed surfactant concentration or fixed particle concentration. Emulsions are most stable under conditions where particles have negligible charge and are most flocculated. Freeze fracture scanning electron microscopy confirms the presence of particle flocs at drop interfaces. At low pH, particles and surfactant are good emulsifiers alone. Synergism is also displayed in these mixtures, with the extent of creaming being minimum when particles are most flocculated. Experiments have been undertaken in order to offer an explanation for the latter synergy. By determining the adsorption isotherm of surfactant on particles in water, we show that surfactant addition initially leads to particle flocculation followed by re-dispersion. Using suitable contact angle measurements at oil-water-solid interfaces, we show that silica surfaces initially become increasingly hydrophobic upon surfactant addition, as well as surfactant adsorption lowering the oil-water interfacial tension. A competition exists between the influence of surfactant on the contact angle and the tension in the attachment energy of a particle to the interface.  相似文献   

4.
The structure and stability of emulsions formed in the presence of nanoparticles of poly(lactic-co-glycolic acid) (PLGA) were characterised. From oil-water contact angles on PLGA films, it was deduced that particle surface hydrophobicity is linked to the oil phase polarity. Incorporation of polyvinyl alcohol molecules into the nanoparticle surfaces reduces the particle hydrophobicity sufficiently for oil-in-water emulsions to be preferentially stabilised. PLGA nanoparticles enhance the stability of emulsions formed from a wide range of oils of different polarities. The nanoparticle concentration was found to be a key parameter controlling the average size and coalescence stability of the emulsion drops. Visualisation of the interfacial structure by electron microscopy indicated that PLGA nanoparticles were located at the drop surfaces, evidence of the capacity of these particles to stabilise Pickering-type emulsions. These results provide insights into the mechanism of PLGA nanoparticle stabilisation of emulsions.  相似文献   

5.
Stabilization of emulsions with solid particles can be used in several fields of oil and gas industry because of their higher stability. Solid particles should be amphiphilic to be able to make Pickering emulsions. This goal is achieved by using surfactants at low concentrations. Oil-in-water (o/w) emulsions are usually stabilized by surfactant but show poor thermal stability. This problem limits their applications at high-temperature conditions. In this study, a novel formulation for o/w stabilized emulsion by using silica nanoparticles and the nonionic surfactant is investigated for the formulation of thermally stable Pickering emulsion. The experiments performed on this Pickering emulsion formula showed higher thermal stability than conventional emulsions. The optimum wettability was found for DME surfactant and silica nanoparticles, consequently, in that region; Pickering emulsion showed the highest stability. Rheological changes were evaluated versus variation in surfactant concentration, silica concentration and pH. Scanning electron microscopy images approved the existence of a rigid layer of nanoparticle at the oil-water interface. Finally, the results show this type of emulsion remains stable in harsh conditions and allows the system to reach its optimum rheology without adding any further additives.  相似文献   

6.
基于两相分离的乳状液稳定模型,研究了三元复合驱模拟原油乳状液稳定动力学特性;通过液膜强度和油水界面张力探讨了碱/表面活性剂/聚合物对模拟原油乳状液稳定动力学特性的影响机理。 结果表明,乳状液稳定模型可以很好的评价乳状液的稳定性,并得到乳状液的稳定动力学特性;碱浓度小于900 mg/L有利于乳状液的稳定,碱浓度大于900 mg/L不利于乳状液的稳定;表面活性剂和聚合物浓度的增加使得形成的模拟原油乳状液更加稳定;模拟原油乳状液的稳定作用主要是通过碱、表面活性剂降低油水界面张力并增加油水界面膜强度,聚合物通过提高界面膜强度实现的,三者存在协同效应。  相似文献   

7.
Unmodified Fe(3)O(4) nanoparticles do not stabilize Pickering emulsions of a polar oil like butyl butyrate. In order to obtain stable emulsions, the Fe(3)O(4) nanoparticles were modified by either carboxylic acid (RCOOH) or silane coupling agents (RSi(OC(2)H(5))(3)) to increase their hydrophobicity. The influence of such surface modification on the stability of the resultant Pickering emulsions was investigated in detail for both a non-polar oil (dodecane) and butyl butyrate in mixtures with water. The stability of dodecane-in-water emulsions in the presence of carboxylic acid-coated particles decreases as the length of the alkyl group (R) and the coating extent increase. However, such particles are incapable of stabilizing butyl butyrate-water emulsions even when the carboxylic acid length is decreased to two. However, the silane-coated Fe(3)O(4) nanoparticles can stabilize butyl butyrate-in-water emulsions, and they also increase the stability of dodecane-in-water emulsions. Thermal gravimetric analysis indicates that the molar quantity of silane reagent is much higher than that of carboxylic acid on nanoparticle surfaces after modification, raising their hydrophobicity and enabling enhanced stability of the resultant polar oil-water emulsions.  相似文献   

8.
Twelve oil-in-water nano-emulsions were prepared using a melt high-pressure homogenisation process (HPH) at 300, 800 or 1200 bar. The resulting emulsions containing 20 wt% palm oil in the absence or presence of α-tocopherol were stabilised by whey proteins alone or in mixture with lecithin. Lipid nanoparticles in these emulsions were characterized for their particle size, surface charge and protein surface concentration (PSC) in relation to their stability against aggregation and coalescence, and to their ability for encapsulation and protection of α-tocopherol against chemical degradation. Increasing HPH values were accompanied by the formation of lipid nanoparticles with decreasing size and PSC, but increasing long-term stability against aggregation and coalescence in parallel with an increase in α-tocopherol degradation (up to 15 wt% for 1200 bar). Presence of α-tocopherol, led to increasing (or decreasing) PSC values with increasing (or decreasing) HPH values for lipid nanoparticles stabilised by proteins alone (or in mixture with lecithins). In addition to these structural properties, the ability for α-tocopherol long-term stability of nanoparticles in emulsions was shown to differ more depending on their adsorbed materials (protein alone, or in mixture with lecithin) than on their particle size values. After 2 months storage, α-tocopherol in emulsions prepared at 300, 800 or 1200 bar was protected against chemical degradation at 79, 77, 67 wt%, respectively, when whey proteins were used alone, instead of 66, 63, 48 wt% when proteins were used in mixture with lecithins. These results indicated the dominant role of adsorbed proteins on the protection of vitamin models by nanoemulsions. They are of a great technological importance for production of lipid nanoparticles presenting a high volume-to-diameter ratio values and consequently high exchange surfaces between the matrix carrier and water and oxygen environmental factors.  相似文献   

9.
Water-in-oil, high internal phase emulsion made of super-cooled aqueous solution containing a mixture of inorganic salts and stabilized with non-ionic surfactant (sorbitan monooleate) alone was investigated. It was not possible to produce a highly concentrated emulsion (with aqueous phase fraction = 94 wt %), stabilized with surface-treated silica, solely: we were able to form an emulsion with a maximal aqueous phase mass fraction of 85 wt % (emulsion inverts/breaks above this concentration). The inversion point is dependent on the silica particle concentration, presence of salt in the aqueous phase, and does not depend on the pH of the dispersed phase. All emulsions stabilized by the nanoparticles solely were unstable to shear. So, the rheological properties and stability of the emulsions containing super-cooled dispersed phase, with regards to crystallization, were determined for an emulsion stabilized by non-ionic surfactant only. The results were compared to the properties obtained for emulsions stabilized by surface treated (relatively hydrophobic) silica nanoparticles as a co-surfactant to sorbitan monooleate. The influence of the particle concentration, type of silica surface treatment, particle/surfactant ratio on emulsification and emulsion rheological properties was studied. The presence of the particles as a co-stabilizer increases the stability of all emulsions. Also, it was found that the particle/surfactant ratio is important since the most stable emulsions are those where particles dominate over the surfactant, when the surfactant’s role is to create bridging flocculation of the particles. The combination of the two types of hydrophobic silica particles as co-surfactants is: one that resides at the water/oil interface and provides a steric boundary and another that remains in the oil phase creating a 3D-network throughout the oil phase, which is even more beneficiary in terms of the emulsion stability.  相似文献   

10.
We compared the efficacy of Pickering crystals, a continuous phase crystal network, and a combination thereof against sedimentation and dispersed phase coalescence in water-in-oil (W/O) emulsions. Using 20 wt % water-in-canola oil emulsions as our model, glycerol monostearate (GMS) permitted Pickering-type stabilization, whereas simultaneous usage of hydrogenated canola oil (HCO) and glycerol monooleate (GMO) primarily led to network-stabilized emulsions. A minimum of 4 wt % GMS or 10 wt % HCO was required for long-term sedimentation stability. Although there were no significant differences between the two in mean droplet size with time, the free water content of the network-stabilized emulsions was higher than Pickering-stabilized emulsions, suggesting higher instability. Microscopy revealed the presence of crystal shells around the dispersed phase in the GMS-stabilized emulsions, whereas in the HCO-stabilized emulsion, spherulitic growth in the continuous phase and on the droplet surface occurred. The displacement energy (E(disp)) to detach crystals from the oil-water interface was ~10(4) kT, and was highest for GMS crystals. Thermal cycling to induce dispersed phase coalescence of the emulsions resulted in desorption of both GMS and GMO from the interface, which we ascribed to solute-solvent hydrogen bonding between the emulsifier molecules and the solvent oil, based on IR spectra. Overall, Pickering crystals were more effective than network crystals for emulsion stabilization. However, the thermal stability of all emulsions was hampered by the diffusion of the molten emulsifiers from the interface.  相似文献   

11.
Novel oil‐in‐water (O/W) emulsions are prepared which are stabilised by a cationic surfactant in combination with similarly charged alumina nanoparticles at concentrations as low as 10?5 m and 10?4 wt %, respectively. The surfactant molecules adsorb at the oil‐water interface to reduce the interfacial tension and endow droplets with charge ensuring electrical repulsion between them, whereas the charged particles are dispersed in the aqueous films between droplets retaining thick lamellae, reducing water drainage and hindering flocculation and coalescence of droplets. This stabilization mechanism is universal as it occurs with different oils (alkanes, aromatic hydrocarbons and triglycerides) and in mixtures of anionic surfactant and negatively charged nanoparticles. Further, such emulsions can be switched between stable and unstable by addition of an equimolar amount of oppositely charged surfactant which forms ion pairs with the original surfactant destroying the repulsion between droplets.  相似文献   

12.
原油乳状液稳定性和破乳研究进展   总被引:14,自引:0,他引:14  
本文从控制乳状液稳定性的一些因素-界面膜、界面张力、双电层、空间位阻、固体粒子、液晶、油相溶解度、连续相粘度等方面综述了有关乳状液稳定性的一些研究进展。对国内外有关原油乳状液的破乳研究也做了综述。同时,介绍了应用于乳状液稳定性研究的新的实验技术和仪器。  相似文献   

13.
40% V/V Bis(Perfluorobutyl)ethene (F44E) emulsions were manufactured using 1-6% W/V purified egg yolk lecithin (EYL) as emulsifier. Knowing the surfactant molecular cross sectional area, the volume of the discontinuous phase and the amount of surfactant adsorbed at the interface as a function of its concentration in the emulsion, the theoretical surface volume diameter, D, for either a mono or a bilayer for different EYL concentrations in the emulsions were calculated. These were compared with experimentally determined droplet diameters obtained from centrifugal sedimentation followed by densitometry. Within the parameters used in this study, the results suggest the existence of an anisotropic interfacial film around the F44E droplets whose saturation is emulsifier concentration dependant  相似文献   

14.
The formation of particle-stabilised emulsions by adding partially hydrophobised silica particles to surfactant-free oil-in-water emulsions (average drop diameter approximately 700 nm) stabilised by hydroxide ions adsorbed at the oil-water interface has been investigated. Nanoparticles (average particle diameter 18 nm) adsorbed onto the drops under alkaline conditions to produce particle-stabilised emulsions with the same drop size distribution as the surfactant-free emulsions. Unlike the surfactant-free emulsions, the particle-stabilised emulsions were stable even in acidic conditions. Strongly flocculated nanoparticles (average particle diameter 150 nm) adsorbed onto the drop surfaces under acidic conditions where the emulsions were destabilised, forming coarser particle-stabilised emulsions with micron-sized drops.  相似文献   

15.
Water‐in‐oil (w/o) emulsions were prepared with phosphatidylcholine‐depleted lecithin or polyglycerol polyricinoleate (PGPR) as emulsifying agents. The effect of different laboratory emulsification devices and the effect of sodium chloride on particle size distribution, coalescence stability, and water droplet sedimentation were investigated. The properties of lecithin‐stabilized w/o emulsions were found to depend more strongly on the emulsifying method than those prepared with PGPR. The rotor‐stator system was not suitable for preparing stable w/o emulsions with lecithin. Whereas the addition of salt was essential to achieve coalescence‐stable emulsions prepared with PGPR, the presence of NaCl favored the coalescence of water droplets and phase separation in emulsions containing lecithin.  相似文献   

16.
The stability of oil in water emulsions containing a triisocyanate soluble in the oil phase was investigated. The oil component was either di-n-butyl phthalate (DBP) or a mixture of DBP with liquid paraffin. The time required for the average size parameter to reach a constant value was studied. It was found that the polyurea film produced by an interfacial polymerization reaction between water and a triisocyanate contributed to make the stable emulsions. The effects of drop size, temperature, polarity of oil phase, triisocyanate concentration, and mechanical stirring on the stability of the emulsions were established in this study. The film thickness at the point where the average size parameter reached a constant value was found to be of the order of 0. 002 ~ 0. 004μ.  相似文献   

17.
Paraffin emulsions are commonly used in the manufacture of chipboard panels to provide resistance to water and humidity. The quality and performance of chipboards are improved with the use of paraffin emulsions stabilized by mixed surfactant systems, although little is known about the basic colloidal chemistry of such systems and their implications in the manufacturing and processing of the chipboard panels. In the present work, the stability and the phase behavior of paraffin emulsions stabilized by a mixture of anionic and nonionic surfactants, are described. Stability is studied by applying thermal and ultracentrifugation cycles, and also by rheology (steady state and dynamic determinations). A significant increase of stability is observed at high {anionic surfactant/(anionic surfactant+nonionic surfactant)} ratios. Phase behavior studies have demonstrated the presence of hexagonal liquid crystalline structures at high ionic surfactant/nonionic surfactant ratios and the presence of lamellar structures at low ratios. The stability of emulsions could be related to phase behavior, and, thus, providing a qualitative tool to predict stability.  相似文献   

18.
Chitosan without hydrophobic modification is not a good emulsifier itself. However, it has a pH-tunable sol-gel transition due to free amino groups along its backbone. In the present work, a simple reversible Pickering emulsion system based on the pH-tunable sol-gel transition of chitosan was developed. At pH > 6.0, as adjusted by NaOH, chitosan was insoluble in water. Chitosan nanoparticles or micrometer-sized floccular precipitates were formed in situ. These chitosan aggregates could adsorb at the interface of oil and water to stabilize the o/w emulsions, so-called Pickering emulsions. At pH < 6.0, as adjusted by HCl, chitosan was soluble in water. Demulsification happened. Four organic solvents (liquid paraffin, n-hexane, toluene, and dichloromethane) were chosen as the oil phase. Reversible emulsions were formed for all four oils. Chitosan-based Pickering emulsions could undergo five cycles of emulsification-demulsification with only a slight increase in the emulsion droplet size. They also had good long-term stability for more than 2 months. Herein, we give an example of chitosan without any hydrophobic modification to act as an effective emulsifier for various oil-water systems. From the results, we have determined that natural polymers with a stimulus-responsive sol-gel transition should be a good particulate emulsifier. The method for in situ formation of pH-responsive Pickering emulsions based on chitosan will open up a new route to the preparation of a wide range of reversible emulsions.  相似文献   

19.
The stability and droplet size of protein and lipid stabilised emulsions of caraway essential oil as well as the amount of protein on the emulsion droplets have been investigated. The amount of added protein (beta-lactoglobulin) and lipid (phosphatidylcholine from soybean (sb-PC)) were varied and the results compared with those obtained with emulsions of a purified olive oil. In general, emulsions with triglyceride oil proved to be more stable compared with those made with caraway essential oil as the dispersed phase. However, the stability of the emulsions can be improved considerably by adding sb-PC. An increase in the protein concentration also promoted emulsion stability. We will also present how ellipsometry can be used to study the adsorption of the lipid from the oil and the protein from the aqueous phase at the oil-water interface. Independently of the used concentration, close to monolayer coverage of sb-PC was observed at the caraway oil-aqueous interface. On the other hand, at the olive oil-aqueous interface, the presence of only a small amount of sb-PC lead to an exponential increase of the layer thickness with time beyond monolayer coverage. The amounts of beta-lactoglobulin adsorbed at the caraway oil-aqueous interface and at the olive oil-aqueous interface were similar, corresponding roughly to a protein monolayer coverage.  相似文献   

20.
Interfacial tension in the oil/water system in the presence of various ionic surfactants and inorganic electrolytes was studied. Special features of the effect of the surfactant and oil phase natures, of the structure of their molecules, and also of the electrolytes containing ions with various radii, valences, and hydratabilities on the value of the interfacial tension were studied. The criteria and conditions of obtaining model emulsions based on paraffin hydrocarbons and technical emulsions based on vegetable oils were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号