首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ru/TiO2 catalysts exhibit an exceptionally high activity in the selective methanation of CO in CO2‐ and H2‐rich reformates, but suffer from continuous deactivation during reaction. This limitation can be overcome through the fabrication of highly active and non‐deactivating Ru/TiO2 catalysts by engineering the morphology of the TiO2 support. Using anatase TiO2 nanocrystals with mainly {001}, {100}, or {101} facets exposed, we show that after an initial activation period Ru/TiO2‐{100} and Ru/TiO2‐{101} are very stable, while Ru/TiO2‐{001} deactivates continuously. Employing different operando/in situ spectroscopies and ex situ characterizations, we show that differences in the catalytic stability are related to differences in the metal–support interactions (MSIs). The stronger MSIs on the defect‐rich TiO2‐{100} and TiO2‐{101} supports stabilize flat Ru nanoparticles, while on TiO2‐{001} hemispherical particles develop. The former MSIs also lead to electronic modifications of Ru surface atoms, reflected by the stronger bonding of adsorbed CO on those catalysts than on Ru/TiO2‐{001}.  相似文献   

2.
Sword‐like anatase TiO2 nanobelts exposed with 78 % clean {100} facets were synthesized and the facet‐dependent photoreactivity of anatase TiO2 was investigated. By quantitative comparison with the reference {001} facets, the {100} facets possessed about ten‐times higher active sites density than that on {001} facets, resulting in higher photoreaction efficiency. After the active sites density normalization, the {100} and {001} facets exhibited distinct wavelength‐dependent photocatalytic performance, attributed to the anisotropic electronic structures in TiO2 crystals.  相似文献   

3.
Core–shell TiO2 microspheres possess a unique structure and interesting properties, and therefore, they have received much attention. The high‐energy facets of TiO2 also are being widely studied for the high photocatalytic activities they are associated with. However, the synthesis of the core–shell structure is difficult to achieve and requires multiple‐steps and/or is expensive. Hydrofluoric acid (HF), which is highly corrosive, is usually used in the controlling high‐energy facet production. Therefore, it is still a significant challenge to develop low‐temperature, template‐free, shape‐controlled, and relative green self‐assembly routes for the formation of core–shell‐structured TiO2 microspheres with high‐energy facets. Here, we report a template‐ and hydrofluoric acid free solvothermal self‐assembly approach to synthesize core–shell TiO2 microspheres covered with high‐energy {116}‐facet‐exposed nanosheets, an approach in which 1,4‐butanediamine plays a key role in the formation of nanosheets with exposed {116} facets and the doping of nitrogen in situ. In the structure, nanoparticle aggregates and nanosheets with {116} high‐energy facets exposed act as core and shell, respectively. The photocatalytic activity for degradation of 2,4,6‐tribromophenol and Rhodamine B under visible irradiation and UV/Vis irradiation has been examined, and improved photocatalytic activity under visible light owing to the hierarchical core–shell structure, {116}‐plane‐oriented nanosheets, in situ N doping, and large surface areas has been found.  相似文献   

4.
Anatase TiO2 nanosheets with exposed {001} facets have been controllably modified under non‐thermal dielectric barrier discharge (DBD) plasma with various working gas, including Ar, H2, and NH3. The obtained TiO2 nanosheets possess a unique crystalline core/amorphous shell structure (TiO2@TiO2?x), which exhibit the improved visible and near‐infrared light absorption. The types of dopants (oxygen vacancy/surface Ti3+/substituted N) in oxygen‐deficient TiO2 can be tuned by controlling the working gases during plasma discharge. Both surface Ti3+ and substituted N were doped into the lattice of TiO2 through NH3 plasma discharge, whereas the oxygen vacancy or Ti3+ (along with the oxygen vacancy) was obtained after Ar or H2 plasma treatment. The TiO2@TiO2?x from NH3 plasma with a green color shows the highest photocatalytic activity under visible‐light irradiation compared with the products from Ar plasma or H2 plasma due to the synergistic effect of reduction and simultaneous nitridation in the NH3 plasma.  相似文献   

5.
Graphite-like carbon deposited single-crystal anatase TiO2 with exposed {001} facets was fabricated through a two-step solvothermal process by using glucose as carbon source. The physicochemical properties of the as-prepared samples were investigated by X-ray diffraction, Brunauer-Emmett-Teller, transmission electron microscopy, Raman, UV–vis diffuse reflectance spectra, electrochemical impedance spectroscopy and surface photovoltage spectroscopy. These results demonstrated that graphite-like carbon layers were deposited on the surface of TiO2 single-crystal nanosheets with exposed highly reactive {001} facets via the dehydration of glucose during the process of hydrothermal treatment. The loading of the graphite-like carbon layers could effectively extend the light absorption edge of the single-crystal anatase TiO2 nanosheets to visible light region and accelerate the separation of photo-generated electrons and holes, contributing an excellent visible-light driven photocatalytic performance to the graphite-like carbon deposited single-crystal anatase TiO2 nanosheets for the degradation of methyl orange.  相似文献   

6.
In this study, synthesis, characterization and catalytic performance of a novel supramolecular photocatalytic system including palladium (II) encapsulated within amine‐terminated poly (triazine‐triamine) dendrimer modified TiO2 nanoparticles (Pd (II) [PTATAD] @ TiO2) is presented. The obtained nanodendritic catalyst was characterized by FT‐IR, ICP‐AES, XPS, EDS, TEM, TGA and UV‐DRS. The as‐prepared nanodendritic catalyst was shown to be highly active, selective, and recyclable for the Suzuki–Miyaura and Sonogashira cross‐coupling of a wide range of aryl halides including electron‐rich and electron‐poor and even aryl chlorides, affording the corresponding biaryl compounds in good to excellent yields under visible light irradiation. This study shows that visible light irradiation can drive the cross‐coupling reactions on the Pd (II) [PTATAD] @ TiO2 under mild reaction conditions (27–30 °C) and no additional additives such as cocatalysts or phosphine ligands. So, we propose that the improved photoactivity predominantly benefits from the synergistic effects of Pd (II) amine‐terminated poly (triazine‐triamine) dendrimer on TiO2 nanoparticles that cause efficient separation and photogenerated electron–hole pairs and photoredox capability of nanocatalyst which all of these advantages due to the tuning of band gap of catalyst in the visible light region.  相似文献   

7.
Herein we report a simple synthetic protocol for N‐doped yellow TiO2 (N‐TiO2) hollow spheres as an efficient visible‐light‐active photocatalyst using aqueous titanium peroxocarbonate complex (TPCC) solution as precursor and NH4OH. In the developed strategy, the ammonium ion of TPCC and NH4OH acts as nitrogen source and structure‐directing agent. The synthesized N‐TiO2 hollow spheres are capable of promoting the synthesis of active esters of N‐hydroxyimide and alcohol through simultaneous selective oxidation of alcohol to aldehyde followed by cross‐dehydrogenative coupling (CDC) under ambient conditions upon irradiation of visible light. It is possible to develop a novel and cost‐effective one‐pot strategy for the synthesis of important esters and amides on gram scale using the developed strategy. The catalytic activity of N‐TiO2 hollow spheres is much superior to that of other reported N‐TiO2 samples as well as TiO2 with varying morphology.  相似文献   

8.
In the work presented here, well‐dispersed ferric giniite microcrystals with controlled sizes and shapes are solvothermally synthesized from ionic‐liquid precursors by using 1‐n‐butyl‐3‐methylimidazolium dihydrogenphosphate ([Bmim][H2PO4]) as phosphate source. The success of this synthesis relies on the concentration and composition of the ionic‐liquid precursors. By adjusting the molar ratios of Fe(NO3)3 ? 9H2O to [Bmim][H2PO4] as well as the composition of ionic‐liquid precursors, we obtained uniform microstructures such as bipyramids exposing {111} facets, plates exposing {001} facets, hollow spheres, tetragonal hexadecahedron exposing {441} and {111} facets, and truncated bipyamids with carved {001} facets. The crystalline structure of the ferric giniite microcrystals is disclosed by various characterization techniques. It was revealed that [Bmim][H2PO4] played an important role in stabilizing the {111} facets of ferric giniite crystals, leading to the different morphologies in the presence of ionic‐liquid precursors with different compositions. Furthermore, since these ferric giniite crystals were characterized by different facets, they could serve as model Fenton‐like catalysts to uncover the correlation between the surface and the catalytic performance for the photodegradation of organic dyes under visible‐light irradiation. Our measurements indicate that the photocatalytic activity of as‐prepared Fenton‐like catalysts is highly dependent on the exposed facets, and the surface area has essentially no obvious effect on the photocatalytic degradation of organic dyes in the present study. It is highly expected that these findings are useful in understanding the photocatalytic activity of Fenton‐like catalysts with different morphologies, and suggest a promising new strategy for crystal‐facet engineering of photocatalysts for wastewater treatment based on heterogeneous Fenton‐like process.  相似文献   

9.
Anatase TiO2 nanocrystals and sub-microcrystals with truncated octahedral bipyramidal morphologies were prepared by direct calcination of TiOF2 precursors. The as-prepared TiO2 samples were thoroughly characterized by X-ray diffraction, Raman spectroscopy, field-emission scanning electron microscopy, N2 adsorption-desorption isotherms, X-ray photoelectron spectroscopy, and UV-visible diffuse spectroscopy. It was found that the crystallinity, grain size, and {001}/{101} ratio of the samples can be increased by raising the calcination temperature from 500 to 800 °C. The higher crystallinity and {001}/{101} facet ratio resulted in an increase in both aqueous and gas-phase photocatalytic activities, by inhibiting the recombination and separation of electrons and holes. After selecting two TiO2 samples with high crystallinity and {001}/{101} ratio, Au nanoparticles were decorated on their surfaces, and the photocatalytic activity of the resulting samples under visible light illumination was studied. It was found that the visible light-induced photocatalytic activity increased by 2.6 and 4.8 times, respectively, upon Au decoration of the samples prepared by calcination of TiOF2 at 700 and 800 °C.  相似文献   

10.
An Au/TiO2 nanostructure was constructed to obtain a highly efficient visible‐light‐driven photocatalyst. The design was based on a three‐dimensional ordered assembly of thin‐shell Au/TiO2 hollow nanospheres (Au/TiO2‐3 DHNSs). The designed photocatalysts exhibit not only a very high surface area but also photonic behavior and multiple light scattering, which significantly enhances visible‐light absorption. Thus Au/TiO2‐3 DHNSs exhibit a visible‐light‐driven photocatalytic activity that is several times higher than conventional Au/TiO2 nanopowders.  相似文献   

11.
The development of visible‐light‐active photocatalysts is being investigated through various approaches. In this study, C60‐based sensitized photocatalysis that works through the charge transfer (CT) mechanism is proposed and tested as a new approach. By employing the water‐soluble fullerol (C60(OH)x) instead of C60, we demonstrate that the adsorbed fullerol activates TiO2 under visible‐light irradiation through the “surface–complex CT” mechanism, which is largely absent in the C60/TiO2 system. Although fullerene and its derivatives have often been utilized in TiO2‐based photochemical conversion systems as an electron transfer relay, their successful photocatalytic application as a visible‐light sensitizer of TiO2 is not well established. Fullerol/TiO2 exhibits marked visible photocatalytic activity not only for the redox conversion of 4‐chlorophenol, I?, and CrVI, but also for H2 production. The photoelectrode of fullerol/TiO2 also generates an enhanced anodic photocurrent under visible light as compared with the electrodes of bare TiO2 and C60/TiO2, which confirms that the visible‐light‐induced electron transfer from fullerol to TiO2 is particularly enhanced. The surface complexation of fullerol/TiO2 induced a visible absorption band around 400–500 nm, which was extinguished when the adsorption of fullerol was inhibited by fluorination of the surface of TiO2. The transient absorption spectroscopic measurement gave an absorption spectrum ascribed to fullerol radical cations (fullerol.+) the generation of which should be accompanied by the proposed CT. The theoretical calculation regarding the absorption spectra for the (TiO2 cluster+fullerol) model also confirmed the proposed CT, which involves excitation from HOMO (fullerol) to LUMO (TiO2 cluster) as the origin of the visible‐light absorption.  相似文献   

12.
Graphene oxide (GO) and silver nanoparticles (Ag NPs) sequentially decorated nitrogen‐doped titania nanotube array (N‐TiO2 NTA) had been designed as visible‐light‐driven self‐cleaning surface‐enhanced Raman scattering (SERS) substrate for a recyclable SERS detection application. N‐TiO2 NTA was fabricated by anodic oxidation and then doping nitrogen treatment in ammonia atmosphere, acting as a visible‐light‐driven photocatalyst and supporting substrate. Ag/GO/N‐TiO2 NTA was prepared by decorating GO monolayer through an impregnation process and then depositing Ag NPs through a polyol process on the surface of N‐TiO2 NTA, acting as the collection of organic molecule and Raman enhancement. The SERS activity of Ag/GO/N‐TiO2 NTA was evaluated using methyl blue as an organic probe molecule, revealing the analytical enhancement factor of 4.54 × 104. Ag/GO/N‐TiO2 NTA was applied as active SERS substrate to determine a low‐affinity organic pollutant of bisphenol A, revealing the detection limit of as low as 5 × 10?7 m . Ag/GO/N‐TiO2 NTA could also achieve self‐cleaning function for a recycling utilization through visible‐light‐driven photocatalytic degradation of the adsorbed organic molecules. Ag/GO/N‐TiO2 NTA has been successfully reused for five times without an obvious decay in accuracy and sensitivity for organic molecule detection. The unique properties of this SERS substrate enable it to have a promising application for the sensitive and recyclable SERS detection of low‐affinity organic molecules. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
《Electroanalysis》2006,18(15):1511-1522
Three different types of myoglobin (Mb) layer‐by‐layer films were assembled respectively with TiO2 sol‐gel by vapor‐surface deposition, TiO2 nanoparticles, and poly(styrenesulfonate), designated as {SG‐TiO2/Mb}n, {NP‐TiO2/Mb}n, and {PSS/Mb}n. The permeability of the films was studied and compared by rotating disk voltammetry (RDV) and electrochemical impedance spectroscopy (EIS) with different electroactive probes, showing a general permeability sequence of {SG‐TiO2/Mb}n>{NP‐TiO2/Mb}n>{PSS/Mb}n. The electrochemical and electrocatalytic activity of Mb in these films were also investigated and compared by cyclic voltammetry (CV), RDV, and amperometry, indicating that among the three Mb films, {SG‐TiO2/Mb}n films demonstrated the highest maximum surface concentration of electroactive Mb and the best electrocatalytic performances toward reduction of H2O2. All these advantages could be attributed to the unique architecture and porous structure of {SG‐TiO2/Mb}n films, which could greatly facilitate the mass transport of small counterions and catalytic substrates within the films. The various influencing factors on the permeability, electrochemistry, and electrocatalysis of the Mb films were also investigated in detail.  相似文献   

14.
《中国化学会会志》2017,64(12):1392-1398
A nitrogen‐doped TiO2 (N‐TiO2) nanowire film was synthesized via a one‐pot hydrothermal method using triethylamine as nitrogen source. The effect of the concentration of the triethylamine on the films was evaluated. In addition, the N‐TiO2 nanowires were characterized using field‐emission scanning electron microscopy (FE‐SEM), X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and ultraviolet–visible spectroscopy. A 3.2× enhancement of the photocurrent for N‐TiO2 (0.6) was achieved over the as‐prepared TiO2 nanowire, under AM1.5G solar illumination. This was due to nitrogen doping, which could narrow the bandgap of titania to extend the adsorption of the catalyst to the visible light region.  相似文献   

15.
The strong band-to-band absorption of photocatalysts spanning the whole visible-light region (400–700 nm) is critically important for solar-driven photocatalysis. Although it has been actively and widely used as a photocatalyst for various reactions in the past four decades, TiO2 has a very poor ability to capture the whole spectrum of visible light. In this work, by controlling the spatially homogeneous distribution of boron and nitrogen heteroatoms in anatase TiO2 microspheres with a predominance of high-energy {001} facets, a strong visible-light absorption spectrum with a sharp edge beyond 680 nm has been achieved. The red TiO2 obtained with homogeneous doping of boron and nitrogen shows no increase in defects like Ti3+ that are commonly observed in doped TiO2. More importantly, it has the ability to induce photocatalytic water oxidation to produce oxygen under the irradiation of visible light beyond 550 nm and also the photocatalytic reduction of water to produce hydrogen under visible light. These results demonstrate the great promise of using red TiO2 for visible-light photocatalytic water splitting and also reveal an attractive strategy for realizing the wide-spectrum visible-light absorption of wide-band-gap oxide photocatalysts.  相似文献   

16.
Imines are important intermediates for the synthesis of fine chemicals, pharmaceuticals, and agricultural chemicals. Selective oxidation of amines into their corresponding imines with dioxygen is one of the most‐fundamental chemical transformations. Herein, we report the oxidation of a series of benzylic amines into their corresponding imines with atmospheric dioxygen as the oxidant on a surface of anatase TiO2 under visible‐light irradiation (λ>420 nm). The visible‐light response of this system was caused by the formation of a surface complex through the adsorption of a benzylic amine onto the surface of TiO2. From the analysis of products of specially designed benzylic amines, we demonstrated that a highly selective oxygenation reaction proceeds via an oxygen‐transfer mechanism to afford the corresponding carbonyl compound, whose further condensation with an amine would generate the final imine product. We found that when primary benzylic amines (13 examples), were chosen as the substrates, moderate to excellent selectivities for the imine products were achieved (ca. 38–94 %) in moderate to excellent conversion rates (ca. 44–95 %). When secondary benzylic amines (15 examples) were chosen as the substrates, both the corresponding imines and aldehydes were detected as the main products with moderate to high conversion rates (ca. 18–100 %) and lower selectivities for the imine products (ca. 14–69 %). When tribenzylamine was chosen as the substrate, imine (27 %), dibenzylamine (24 %), and benzaldehyde products (39 %) were obtained in a conversion of 50 %. This report can be viewed as a prototypical system for the activation of C? H bonds adjacent to heteroatoms such as N, O, and S atoms, and oxofuctionalization with air or dioxygen as the terminal oxidant under visible‐light irradiation using TiO2 as the photocatalyst.  相似文献   

17.
Vertically aligned BiVO4 nanowall films on indium tin oxide (ITO) glass have been fabricated through a template‐free hydrothermal method for the first time. Based on the structural understanding of both BiVO4 and ITO, the lattice matches ({020}BiVO4 and {040}ITO, {200}BiVO4 and {004}ITO, respectively) and the similarity of metal atomic arrangement parallel to {001} planes turn out to be crucial for the fabrication of the nanowalls. Consequently, the growth of a BiVO4 film begins from heteroepitaxy and undergoes an Ostwald ripening process to form an extended network, resulting in a c‐orientation and exposing {010} facets. Through this process, it is much easier to obtain a range of nanowall films with different packing densities, as the surface state of ITO glass is alterable by adjusting the concentration of acid. The films can be directly used as an electrode, which exhibits an excellent response to visible light, especially light with low intensity, allowing for the electrical interconnection, highly active surface, appropriate orientation, and a good contact with the substrate. There are great benefits in improving the technique for detecting the weak light source signals.  相似文献   

18.
Recently, it has been proven that directional flow of photogenerated charge carriers occurs on specific facets of TiO2 nanocrystals. Herein, we demonstrate that the photocatalytic activity of anatase TiO2 nanocrystals in both photoreduction and photooxidation processes can be enhanced by selectively depositing Pt nanoparticles on the {101} facets, which strengthens spontaneously surface‐induced separation between photogenerated electrons and holes in the photocatalysis process. An optimal ratio of the oxidative {001} facets to the reductive {101} facets exists with regard to the photocatalysis of the faceted TiO2 nanocrystals, and this is crucial for balancing the recombination and redox reaction rates of photogenerated electrons and holes. The present work might help us gain deeper insight into the relation between the specific surface of semiconductor photocatalysts and their photocatalytic activities and provides us with a new route to design photocatalysts with high photocatalytic activity.  相似文献   

19.
The synthesis of Zn‐doped TiO2 nanoparticles by solgel method was investigated in this study, as well as its modification by H2O2. The catalyst was characterized by transmission electron microscopy, X‐ray diffraction, Brunauer–Emmett–Teller, UV–visible reflectance spectra and X‐ray photoelectron spectroscopy (XPS). The results indicated that doping Zn into TiO2 nanoparticles could inhibit the transformation from anatase phase to rutile phase. Zn existed as the second valence oxidation state in the Zn‐doped TiO2. Zn‐doped TiO2 that was synthesized by 5% Zn doping at 450°C exhibited the best photocatalytic activity. Then, the H2O2 modification further enhanced the photocatalytic activity. Zn doping and H2O2 modifying narrowed the band gap and efficiently increased the optical absorption in visible region. The optimal degradation rate of tetracycline by Zn‐doped TiO2 and H2O2 modified Zn‐doped TiO2 was 85.27% and 88.14%. Peroxide groups were detected in XPS analysis of H2O2 modified Zn‐doped TiO2, favoring the adsorption of visible light. Furthermore, Zn‐doped TiO2 modified by H2O2 had relatively good reusability, exhibiting a potential practical application for tetracycline's photocatalytic degradation.  相似文献   

20.
The electronic structure and photoactivation process in N‐doped TiO2 is investigated. Diffuse reflectance spectroscopy (DRS), photoluminescence (PL), and electron paramagnetic resonance (EPR) are employed to monitor the change of optical absorption ability and the formation of N species and defects in the heat‐ and photoinduced N‐doped TiO2 catalyst. Under thermal treatment below 573 K in vacuum, no nitrogen dopant is removed from the doped samples but oxygen vacancies and Ti3+ states are formed to enhance the optical absorption in the visible‐light region, especially at wavelengths above 500 nm with increasing temperature. In the photoactivation processes of N‐doped TiO2, the DRS absorption and PL emission in the visible spectral region of 450–700 nm increase with prolonged irradiation time. The EPR results reveal that paramagnetic nitrogen species (Ns.), oxygen vacancies with one electron (Vo.), and Ti3+ ions are produced with light irradiation and the intensity of Ns. species is dependent on the excitation light wavelength and power. The combined characterization results confirm that the energy level of doped N species is localized above the valence band of TiO2 corresponding to the main absorption band at 410 nm of N‐doped TiO2, but oxygen vacancies and Ti3+ states as defects contribute to the visible‐light absorption above 500 nm in the overall absorption of the doped samples. Thus, a detailed picture of the electronic structure of N‐doped TiO2 is proposed and discussed. On the other hand, the transfer of charge carriers between nitrogen species and defects is reversible on the catalyst surface. The presence of oxygen‐vacancy‐related defects leads to quenching of paramagnetic Ns. species but they stabilize the active nitrogen species Ns?.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号