首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The 4-hydroxy-5,5-dimethyl-2-trifluoromethylpyrroline-1-oxide (FDMPO) spin trap is very attractive for spin trapping studies due to its high stability and high reaction rates with various free radicals. However, the identification of FDMPO radical adducts is a challenging task since they have very comparable Electron Spin Resonance (ESR) spectra. Here we propose a new method for the analysis and interpretation of the ESR spectra of FDMPO radical adducts. Thus, overlapping ESR spectra were analyzed using computer simulations. As a result, the N- and F-hyperfine splitting constants were obtained. Furthermore, an artificial neural network (ANN) was adopted to identify radical adducts formed during various processes (e.g., Fenton reaction, cleavage of peracetic acid over MnO(2), etc.). The ANN was effective on both "known" FDMPO radical adducts measured in slightly different solvents and not a priori "known" FDMPO radical adducts. Finally, the N- and F-hyperfine splitting constants of ·OH, ·CH(3), ·CH(2)OH, and CH(3)(C═O)O(·) radical adducts of FDMPO were calculated using density functional theory (DFT) at the B3LYP/6-31G(d,p)//B3LYP/6-31G++//B3LYP/EPR-II level of theory to confirm the experimental data.  相似文献   

2.
Photo-Fries rearrangement reactions of 1-naphthyl acetate (NA) in n-hexane and in cyclohexane were studied by the magnetic field effect probe (MFE probe) under magnetic fields (B) of 0 to 7 T. Transient absorptions of the 1-naphthoxyl radical, T-T absorption of NA, and a short-lifetime intermediate (τ = 24 ns) were observed by a nanosecond laser flash photolysis technique. In n-hexane, the yield of escaped 1-naphthoxyl radicals dropped dramatically upon application of a 3 mT field, but then the yield increased with increasing B for 3 mT < B≤ 7 T. These observed MFEs can be explained by the hyperfine coupling and the Δg mechanisms through the singlet radical pair. The fact that MFEs were observed for the present photo-Fries rearrangement reaction indicates the presence of a singlet radical pair intermediate with a lifetime as long as several tens of nanoseconds.  相似文献   

3.
Accurate ab initio study of the lowest excited state (A (2)B(2)) of the thiophenoxyl radical is presented. The calculated equilibrium geometries, excitation energies, and harmonic vibrational frequencies show that the A (2)B(2) <-- X (2)B(1) excitation in C(6)H(5)S has different characteristics than the analogous transition in the phenoxyl radical. Vertical excitation energies for other low-lying (<4.5 eV) excited states of the thiophenoxyl radical are also presented and compared with available experimental data.  相似文献   

4.
Magnetic field effects (MFEs) on the photoinduced hydrogen abstraction reaction of benzophenone with phenol were investigated in ionic liquids (ILs) with a short alkyl chain (N,N,N-trimethyl-N-propylammonium bis(trifluoromethanesulfonyl)amide (TMPA TFSA)) and long alkyl chains ((N,N,N-trimethyl-N-octylammonium bis(trifluoromethanesulfonyl)amide (TMOA TFSA) and N-decyl-N,N,N-trimethylammonium bis(trifluoromethanesulfonyl)amide (DTMA TFSA)) by a nanosecond laser flash photolysis technique. In each ionic liquid, escaped radical yield of a benzophenone ketyl radical rapidly increased with increasing magnetic field strength (B) of 0 T < B≤ 0.01 T. At 0.01 T < B≤ 0.4 T, the escaped radical yield almost saturated in TMPA TFSA or gradually increased in TMOA TFSA and DTMA TFSA. At much higher fields of 0.4 T < B≤ 30 T, the yield gradually decreased, resulting in 10-15% decrease at 30 T. The observed MFEs can be explained by the hyperfine coupling and Δg mechanisms together with the relaxation mechanism. On the time profiles of the transient absorption observed for the benzophenone ketyl radical, MFEs were generated in the time range of 0 < t < 0.6 μs. The cage lifetimes of TMOA TFSA and DTMA TFSA were estimated to be at least 120 ns.  相似文献   

5.
Four formyl-group-carrying thioaminyl radicals were generated, and one radical could be isolated as radical crystals. Magnetic susceptibility measurements of the isolated radical showed a ferromagnetic regular linear-chain interaction of 2J/k(B) = 3.2 K, which was explained in terms of the X-ray crystallographic results.  相似文献   

6.
The first radical adducts of a stable N-heterocyclic germylene were investigated. Novel radical species were produced from a variety of precursors and studied by EPR spectroscopy. DFT (B3LYP) calculations of radical adducts of different (C, Si, Ge) unsaturated N-heterocyclic divalent species with phenoxyl radical show that in the radicals studied the unpaired electron is delocalized over the five-membered ring and the spin density on the central atoms decreases in the following order: C > Si > Ge. These trends can be understood in terms of zwitterionic structure of radical adducts.  相似文献   

7.
The reaction of the ketenyl radical (HCCO) with acetylene (C(2)H(2)) is very relevant to the oxygen-acetylene flames and fuel-rich combustion process for nitrogen-containing compounds. Unfortunately, except for several rate constant measurements, the mechanism is completely unknown for this reaction. In this paper, detailed theoretical investigations are performed for the HCCO + C(2)H(2) reaction at the G3B3 level using the B3LYP/6-31G(d), B3LYP/6-311++G(d,p), and QCISD/6-31G(d) geometries. The exclusive fragmentation channel is the formation of the cyclopropenyl radical (c-C(3)H(3)) and carbon monoxide (CO) via the chainlike OCCHCHCH and three-membered ring OC-cCHCHCH intermediates. Thus, the mass spectroscopic peak of C(3)H(3)(+) in a previous experiment can be explained. The calculated overall reaction barrier is 4.4, 4.4, and 5.3 kcal/mol at the G3B3//B3LYP/6-31G(d), G3B3//B3LYP/6-311++G(d,p), and G3B3//QCISD/6-31G(d) levels, respectively. The title reaction may provide an effective route for generating the long-sought cyclopropenyl radical in the laboratory, which has been the long-standing subject of numerous theoretical studies as the simplest cyclic conjugate radical, and its bulky derivatives were already known. Future experimental investigations for the HCCO + C(2)H(2) reaction are greatly desired to test the predicted fragmentation channel. The implication of the present study in combustion and interstellar processes is discussed.  相似文献   

8.
Direct generation of a benzyl radical by C-H bond activation of toluenes and the addition reaction of the resulting radical to an electron deficient olefin were developed. The reaction of dimethyl fumarate with toluene in the presence of Et(3)B as a radical initiator at reflux afforded 2-benzylsuccinic acid dimethyl ester in good yield.  相似文献   

9.
Aluminum ion complexed 5,8-di-Br-hypocrellin B is a new water-soluble perylenequinonoid derivative with enhanced absorption over hypocrellin B (HB) in the phototherapeutic window (600-900 nm). Electron paramagnetic resonance and 9,10-diphenyl-anthracene bleaching methods were used to investigate the photosensitizing activity of [AL2(5,8-di-Br-HB)Cl4]n in the presence of oxygen. Singlet oxygen, superoxide anion radical and hydroxyl radical can be generated by [AL2(5,8-di-Br-HB)CL4]n photosensitization. Singlet oxygen (1O2) is formed via energy transfer from triplet-state [AL2(5,8-di-Br-HB)CL4]n to ground-state molecular oxygen. 1O2 participates in the generation of a portion of superoxide anion radical (O2.-). Besides superoxide anion radical (O2.-) may originate from the electron transfer between the triplet-state [AL2(5,8-di-Br-HB)CL4]n and the ground-state molecular oxygen. OH is formed through the Fenton-Haber-Weiss reaction and the decomposition of DMPO-1O2 adduct. Compared with HB [AL2(5,8-di-Br-HB)CL4]n primarily remains and enhances the generation efficiency of superoxide anion radical and hydroxyl radical but that of singlet oxygen decreases.  相似文献   

10.
Vitamin B(12) and its biologically active counterparts possess the only examples of carbon-cobalt bonds in living systems. The role of such motifs as radical reservoirs has potential application in future catalytic and electronic nanodevices. To fully understand radical generation in coenzyme B(12) (dAdoCbl)-dependent enzymes, however, major obstacles still need to be overcome. In this work, we have used Car-Parrinello molecular dynamics (CPMD) simulations, in a mixed quantum mechanics/molecular mechanics (QM/MM) framework, to investigate the initial stages of the methylmalonyl-CoA-mutase-catalyzed reaction. We demonstrate that the 5'-deoxyadenosyl radical (dAdo(?)) exists as a distinct entity in this reaction, consistent with the results of extensive experimental and some previous theoretical studies. We report free energy calculations and first-principles trajectories that help understand how B(12) enzymes catalyze coenzyme activation and control highly reactive radical intermediates.  相似文献   

11.
Coenzyme B12 initiates radical chemistry in two types of enzymatic reactions, the irreversible eliminases (e.g., diol dehydratases) and the reversible mutases (e.g., methylmalonyl-CoA mutase). Whereas eliminases that use radical generators other than coenzyme B12 are known, no alternative coenzyme B12 independent mutases have been detected for substrates in which a methyl group is reversibly converted to a methylene radical. We predict that such mutases do not exist. However, coenzyme B12 independent pathways have been detected that circumvent the need for glutamate, beta-lysine or methylmalonyl-CoA mutases by proceeding via different intermediates. In humans the methylcitrate cycle, which is ostensibly an alternative to the coenzyme B12 dependent methylmalonyl-CoA pathway for propionate oxidation, is not used because it would interfere with the Krebs cycle and thereby compromise the high-energy requirement of the nervous system. In the diol dehydratases the 5'-deoxyadenosyl radical generated by homolysis of the carbon-cobalt bond of coenzyme B12 moves about 10 A away from the cobalt atom in cob(II)alamin. The substrate and product radicals are generated at a similar distance from cob(II)alamin, which acts solely as spectator of the catalysis. In glutamate and methylmalonyl-CoA mutases the 5'-deoxyadenosyl radical remains within 3-4 A of the cobalt atom, with the substrate and product radicals approximately 3 A further away. It is suggested that cob(II)alamin acts as a conductor by stabilising both the 5'-deoxyadenosyl radical and the product-related methylene radicals.  相似文献   

12.
The molecular structure and radical scavenging activity of three novel antioxidants from Lespedeza Virgata, lespedezavirgatol, lespedezavirgatal, and lespedezacoumestan, have been studied using density functional theory with the B3LYP and BhandHLYP methods. The optimized geometries of neutral, radical cation, radical and anion forms were obtained at the B3LYP/6-31G(d) level, in which it was found that all the most stable conformations contain intramolecular hydrogen bonds. The same results were obtained from the MP2 method. The homolytic O-H bond dissociation enthalpy and the adiabatic ionization potential of neutral and anion forms for the three new antioxidants and adiabatic electron affinity and H-atom affinity for hydroxyl radical, superoxide anion radical, and hydrogen peroxide radical were determined both in gas phase and in aqueous solution using IEF-PCM and CPCM model with UAHF or Bondi cavity. The antioxidant activities and reactive oxygen species scavenging mechanisms were then discussed, and the results obtained from different methods are consistent. Furthermore, the antioxidant activities are consistent with the experimental findings of the compounds under investigation.  相似文献   

13.
Reaction rate constants of (−)-epigallocatechin gallate (EGCG) and (+)-catechin with the hydroxyl radical (·OH) were measured using the rapid flow ESR method. The rate constant of EGCG was larger twice than that of the pyrogallol or gallic acid, they are the model compounds of the B ring of EGCG. It was explained by the quantum-chemical calculation of the bond dissociation energy (BDE) of the phenolic hydroxyl group (ϕ-OH) and the spin densities of EGCG radical. The energy of the EGCG radical was lowered by the hydrogen bonding between the radical part on the B ring and the hydroxyl group on the gallate group, leading to the lowering of BDE. Linear relationship between the relative activation energy and BDE of all the polyphenols measured was observed (Evans-Polanyi equation), showing that the reaction with ·OH occurs in the same manner.  相似文献   

14.
Two new monoterpene diglycosides, suffruyabiosides A and B, and seven known compounds 3-9 were isolated from Moutan Cortex (root cortex of Paeonia suffruticosa Andrews). The structures were elucidated on the basis of 2D NMR spectral data. Suffruyabiosides A and B are rare monoterpene diglycosides, including a cellobiose in the molecules. Salicylpaeoniflorin (4) had a antiproliferation effect similar to paeoniflorin (3) on human lung adenocarcinoma epitherial A549 cells. Galloylpaeoniflorin (8) and salicylpaeoniflorin (4) revealed a more pronounced radical scavenging effect than a-tocopherol (positive control). An increase in the number of phenolic hydroxyl groups produced a more effective radical scavenging effect [8 > mudanpioside E (6) > oxypaeoniflorin (5)]. Comparison of the effects of 4 and 5 showed that o-substitution with a phenolic hydroxyl group was more effective than p-substitution. The results suggest that salicylpaeoniflorin (4) may be useful as a cytotoxic and a radical scavenging agent.  相似文献   

15.
The antioxidant activities of flavonoids and their glycosides were measured with the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH radical, DPPH(·)) scavenging method. The results show that free hydroxyl flavonoids are not necessarily more active than O-glycoside. Quercetin and kaempferol showed higher activity than apigenin. The C- and O-glycosides of flavonoids generally showed higher radical scavenging activity than aglycones; however, kaempferol C3-O-glycoside (astragalin) showed higher activity than kaempferol. In the radical scavenging activity of flavonoids, it was expected that OH substitutions at C3 and C5 and catechol substitution at C2 of B ring and intramolecular hydrogen bonding between OH at C5 and ketone at C3 would increase the activity; however, the reasons have yet to be clarified. We here show that the radical scavenging activities of flavonoids are controlled by their absolute hardness (η) and absolute electronegativity (χ) as a electronic state. Kaempferol and quercetin provide high radical scavenging activity since (i) OH substitutions at C3 and C5 strikingly decrease η of flavones, (ii) OH substitutions at C3 and C7 decrease χ and η of flavones, and (iii) phenol or o-catechol substitution at C2 of B ring decrease χ of flavones. The coordinate r(χ,?η) as the electron state must be small to increase the radical scavenging activity of flavonoids. The results show that chemically soft kaempferol and quercetin have higher DPPH radical scavenging activity than chemically hard genistein and daidzein.  相似文献   

16.
The radical anions and radical cations of the two tautomers (1e and 1i) of 5,10,15,20-tetraphenyl N-confused free-base porphyrin have been studied using a combination of cyclic voltammetry, steady state absorption spectroscopy, and computational chemistry. N-Confused porphyrins (NCPs), alternatively called 2-aza-21-carba-5,10,15,20-tetraphenylporphyrins or inverted porphyrins, are of great interest for their potential as building blocks in assemblies designed for artificial photosynthesis, and understanding the absorption spectra of the corresponding radical ions is paramount to future studies in multicomponent arrays where electron-transfer reactions are involved. NCP 1e was shown to oxidize at a potential of E(ox) 0.65 V vs Fc(+)|Fc in DMF and reduce at E(red) -1.42 V, while the corresponding values for 1i in toluene were E(ox) 0.60 V and E(red) -1.64 V. The geometries of these radical ions were computed at the B3LYP/6-31+G(d)//B3LYP/6-31G(d) level in the gas phase and in solution using the polarizable continuum model (PCM). From these structures and that of H(2)TPP and its corresponding radical ions, the computed redox potentials for 1e and 1i were calculated using the Born-Haber cycle. While the computed reduction potentials and electron affinities were in excellent agreement with the experimental reduction potentials, the calculated oxidation potentials displayed a somewhat less ideal relationship with experiment. The absorption spectra of the four radical ions were also measured experimentally, with radical cations 1e(?+) and 1i(?+) displaying significant changes in the Soret and Q-band regions as well as new low energy absorption bands in the near-IR region. The changes in the absorption spectra of radical anions 1e(?-) and 1i(?-) were not as dramatic, with the changes occurring only in the Soret and Q-band regions. These results were favorably modeled using time-dependent density functional calculations at the TD-B3LYP/6-31+G(d)//B3LYP/6-31G(d) level. These results were also compared to the existing data of free base tetraphenylporphyrin and free base tetraphenylchlorin.  相似文献   

17.
The aqueous photochemistry of the sodium salt of 1-(N,N-diethylamino)-diazen-1-ium-1,2-diolate (3) has been investigated by both experimental and computational methods. Photolysis results in the formation of the N-nitrosodiethylamine radical anion (5) and nitric oxide (NO) via a triplet excited state. The nitrosamine radical anion either undergoes electron transfer with NO before cage escape to form triplet NO(-) and nitrosamine (minor process) or rapidly dissociates to form an additional molecule of NO and ultimately amine (major process). The production of nitrosamine radical anion 5 upon photolysis of diazeniumdiolate 3 is confirmed by low-temperature EPR spectroscopy. The calculated energetics for the ground and excited states of the parent diazeniumdiolate ion at the CIS and B3LYP levels of theory as well as B3LYP calculations on the fragmentation processes were very effective in rationalizing the observed photodissociation processes.  相似文献   

18.
Laser-induced fluorescence (LIF) excitation spectra of the B-X (2)A(") electronic transition of the CH(2)CHS radical, which is the sulfur analog of the vinoxy (CH(2)CHO) radical, were observed under room temperature and jet-cooled conditions. The LIF excitation spectra show very poor vibronic structures, since the fluorescence quantum yields of the upper vibronic levels are too small to detect fluorescence, except for the vibrationless level in the B state. A dispersed fluorescence spectrum of jet-cooled CH(2)CHS from the vibrationless level of the B state was also observed, and vibrational frequencies in the X state were determined. Precise rotational and spin-rotation constants in the ground vibronic level of the radical were determined from pure rotational spectroscopy using a Fourier-transform microwave (FTMW) spectrometer and a FTMW-millimeter wave double-resonance technique [Y. Sumiyoshi et al., J. Chem. Phys. 123, 054324 (2005)]. The rotationally resolved LIF excitation spectrum for the vibronic origin band of the jet-cooled CH(2)CHS radical was analyzed using the ground state molecular constants determined from pure rotational spectroscopy. Determined molecular constants for the upper and lower electronic states agree well with results of ab initio calculations.  相似文献   

19.
This work describes a strategy not only to isolate a dynamically stable radical with physical property tunability, but to efficiently regulate the radical dissociation with reversibility and photo controllability. The addition of Lewis acid B(C6F5)3 (BCF) into the solution of a radical σ-dimer ( 1-1 ) led to a stable radical ( 1 ⋅-2B), which has been characterized by EPR spectroscopy, UV/Vis spectroscopy and single crystal X-ray diffraction, in conjunction with theoretical calculation. The radical species is stabilized mainly by captodative effect, single electron transfer and steric effect. The absorption maximum of the radical can be tuned by using different Lewis acids. Dimer 1-1 can be achieved back by addition of a stronger base into the solution of 1 ⋅-2B, exhibiting a reversible process. By introducing a photo BCF generator, the dissociation of the dimer and the formation of the radical adduct become photocontrollable.  相似文献   

20.
Despite the fundamental importance of radical‐anion radical‐cation pairs in single‐electron transfer (SET) reactions, such species are still very rare and transient in nature. Since diborenes have highly electron‐rich B? B double bonds, which makes them strong neutral reductants, we envisaged a possible realization of a boron‐centered radical‐anion radical‐cation pair by SET from a diborene to a borole species, which are known to form stable radical anions upon one‐electron reduction. However, since the reduction potentials of all know diborenes (E1/2=?1.05/?1.55 V) were not sufficiently negative to reduce MesBC4Ph4 (E1/2=?1.69 V), a suitable diborene, IiPr?(iPr)B?B(iPr)?IiPr, was tailor‐made to comply with these requirements. With a halfwave potential of E1/2=?1.95 V, this diborene ranks amongst the most powerful neutral organic reductants known and readily reacted with MesBC4Ph4 by SET to afford a stable boron‐centered radical‐anion radical‐cation pair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号