首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Two new acetylated kaempferol glycosides were isolated from the seeds of Camellia semiserrata Chi,their structures were elucidated as kaempferol-3-O-[(3-O-acetyl)-α-L-rhamnopyranosyl(1→3)(4-O-acetyl)-α-L-rhamnopyranosyl(1→6)-β-D-glucopyranoside] (1) and kaempferol-3-O-[(2-O-acetyl)-α-L-rhamnopyranosyl(1→3)(4-O-acetyl)-α-L-rhamnopyranosyl(1→6)-β-D-gluco -pyranoside](2) by spectral experiments(including ESI-MS,1D- and 2D-NMR).  相似文献   

2.
Three new flavonol 3-O-glycosides, rhamnetin 3-O-[(S)-3-hydroxy-3-methyl-glutaroyl(1→6)]-β-D-glucopyranoside (1), rhamnocitrin 3-O-[(S)-3-hydroxy-3-methylglutaroyl(1→6)]-β-D-glucopyranoside (2), and isorhamnetin 3-O-[(S)-3-hydroxy-3-methylglutaroyl(1→6)]-α-L-rhamnopyranosyl(1→2)-β-D-glucopyranoside (3), along with 13 known compounds, were isolated from Oxytropis racemosa TURCZ. Their structures were deduced by means of spectroscopic methods and chemical evidence. 2 and 6 showed cytotoxic activities against HCT-8 (IC?? 6.38 μM) and A549 (IC?? 5.20 μM), respectively.  相似文献   

3.
A new flavonol glycoside, kaempferol 3-O-α-L-rhamnopyranosyl (1?→?6)-O-[β-D-glucopyranosyl (1?→?2)-O-β-D-galactopyranosyl (1→2)]-O-β-D-glucopyranoside (1), together with a known compound, kaempferol 3-O-β-D-glucopyranosyl (1?→?2)-O-β-D-galactopyranosyl (1?→?2)-O-β-D-glucopyranoside (2) was isolated from the seeds of Nigella glandulifera. Their structures were elucidated on the basis of spectral analysis, including ESI-MS, ESI-MS/MS, HR-ESI-MS, DQF-COSY, TOCSY, HSQC and HMBC techniques.  相似文献   

4.
Nine compounds have been isolated from the ethyl acetate soluble fraction of C. sinensis, namely protocatechuic acid (1), trans-caffeic acid (2), methyl rosmarinate (3), rosmarinic acid (4), kaempferide-3-O-β-D-glucopyranoside (5), kaempferol-3-O-β-D-glucopyranoside (6), quercetin-3-O-β-D-glucopyranoside (7), kaempferide-3-O-α-L-rhamnopyranosyl (1→6)-β-D-glucopyranoside (8) and kaempferol-3-O-α-L-rhamno-pyranosyl (1→6)-β-D-glucopyranoside (9), all reported for the first time from this species. The structures of these compounds were deduced on the basis of spectroscopic studies, including 1D and 2D NMR techniques. Compounds 1-9 were investigated for biological activity and showed significant anti-inflammatory activity in the carrageen induced rat paw edema test. The antioxidant activities of isolated compounds 1-9 were evaluated by the DPPH radical scavenging test, and compounds 1, 2, 4 and 7-9 exhibited marked scavenging activity compared to the standard BHA. These compounds were further studied for their anti-glycation properties and some compounds showed significant anti-glycation inhibitory activity. The purity of compounds 2-5, 8 and 9 was confirmed by HPLC. The implications of these results for the chemotaxonomic studies of the genus Cordia have also been discussed.  相似文献   

5.
Chikusetsusaponin II and IVc, the minorsaponins of Panacis japonici rhizoma (rhizome of Panax japonicum C.A. MEYER) have been isolated. The structure of these saponins were established as being oleanolic acid-(3)-[β-D-glucopyranosyl (1→6)]-β-D-glucuronopyranoside and 20S-protopanaxatriol-6-(O-α-L-rhamnopyranosyl (1→2)-β-D-glucopyranoside]-20-O-β-D-glucopyranoside. Chikusetsusaponin II is a new structure, while chikusetsusaponin IVc is identical with ginsenoside-Re, isolated from P. ginseng C. A. MEYER.  相似文献   

6.
黄褐毛忍冬中主皂苷成分的结构解析   总被引:1,自引:0,他引:1  
报道了黄褐毛忍冬中的两个皂苷主成分, 其中化合物1为新化合物, 并对另一个含量最高的皂苷结构进行了修正.  相似文献   

7.
云南重楼中的新甾体皂苷   总被引:3,自引:0,他引:3  
从云南重楼Paris polyphylla Sm. var. yunnanensis(France. )Hand.-Mazz.的干燥根茎中分离鉴定了4个甾体皂苷(1~4), 其中化合物1是新化合物, 采用波谱技术鉴定其结构为24-O-β-D-吡喃半乳糖基-(23S,24S)-螺甾-5, 25(27)-二烯-1β,3β,23,24-四醇-1-O-β-D-吡喃木糖基(1→6)-β-D-吡喃葡萄糖基(1→3)[α-L-吡喃鼠李糖基(1→2)]-β-D-吡喃葡萄糖苷.  相似文献   

8.
A new spirostanol steroidal saponin,named maireioside A(1),together with three known steroidal saponins,hypoglaucin G(2), parisaponin I(3),and diosgenin-3-O-α-L-rhamnopyranosyl(1→4)-[α-L-rhamnopyranosyl(1→2)]-β-D-glucopyranoside(4),were isolated from the rhizomes of Paris mairei.The structure elucidation was accomplished by 1D and 2D NMR methods,HR-ESI-MS, and hydrolysis.  相似文献   

9.
In this paper, the combined techniques of macroporous resin column chromatography and high speed counter-current chromatography were applied for preparative separation of flavonoid triglycosides from the leaves of Actinidia valvata Dunn, a famous Chinese medicinal herb. Twelve kinds of macroporous resins were investigated by adsorption and desorption tests. HPD-300 resin showed the maximum effectiveness and thus was selected for the first cleaning-up, in which 20% ethanol was used to remove the undesired constituents and 60% ethanol to elute the targets. The crude extract was then purified by high speed counter-current chromatography with the solvent system composed of ethyl acetate-n-butanol-water (2:1:3 and 4:1:5, v/v). Three flavonoid triglycosides, namely, kaempferol 3-O-α-L-rhamnopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→6)-β-D-galactopyranoside, kaempferol 3-O-α-L-rhamnopyranosyl-(1→3)-(4-O-acetyl-α-L-rhamnopyranosyl)-(1→6)-β-D-galactopyranoside and kaempferol 3-O-α-L-rhamnopyranosyl-(1→3)-(2,4-di-O-acetyl-α-L-rhamnopyranosyl)-(1→6)-β-D-galactopyranoside, were obtained. The purities of the separated compounds were all over 95% as determined by HPLC area normalization method. Their chemical structures were confirmed by UV, MS, NMR, and the standards.  相似文献   

10.
Three new triterpenoid saponins (1-3) were isolated from the dried aerial parts of Dianthus superbus L. (Caryophyllaceae). Their structures were established as 3-O-β-D-glucopyranosyl gypsogenic acid 28-O-[β-D-6-O-((3S)-3-hydroxyl-3-methylglutaryl)glucopyranosyl(1→6)]-β-D-glucopyranoside (1), 3-O-β-D-glucopyranosyl gypsogenic acid 28-O-[β-D-glucopyranosyl(1→3)][β-D-6-O-((3S)-hydroxyl-3-methylglutaryl)glucopyranosyl(1→6)]-β-D-glucopyranoside (2), 3-O-α-L-arabinopyranosyl-3β,16α-dihydroxyolean-12-en-23,28-dioic acid 28-O-[β-D-glucopyranosyl-(1→6)]-β-D-glucopyranoside (3), on the basis of various spectroscopic analyses and chemical degradations.  相似文献   

11.
Guided by a hemostasis bioassay, seven terpene glycosides were isolated from the roots of Sanguisorba officinalis L. by silica gel column chromatography and preparative HPLC. On the grounds of chemical and spectroscopic methods, their structures were identified as citronellol-1-O-α-L-arabinofuranosyl-(1→6)-β-D-glucopyranoside (1), geraniol-1-O-α-L-arabinofuranosyl-(1→6)-β-D-glucopyranoside (2), geraniol-1-O-α-Larabinopyranosyl-(1→6)-β-D-glucopyranoside (3), 3β-[(α-L-arabinopyranosyl)oxy]-19α-hydroxyolean-12-en-28-oic acid 28-β-D-glucopyranoside (4), 3β-[(α-L-arabinopyranosyl)-oxy]-19α-hydroxyurs-12-en-28-oic acid 28-β-D-glucopyranoside (ziyu-glycoside I, 5), 3β,19α-hydroxyolean-12-en-28-oic acid 28-β-D-glucopyranoside (6) and 3β,19α-dihydroxyurs-12-en-28-oic acid 28-β-D-glucopyranoside (7). Compound 1 is a new mono-terpene glycoside and compounds 2, 3 and 5 were isolated from the Sanguisorba genus for the first time. Compounds 1–7 were assayed for their hemostatic activities with a Goat Anti-Human α2-plasmin inhibitor ELISA kit, and ziyu-glycoside I (5) showed the strongest hemostatic activity among the seven terpene glycosides. This is the first report that ziyu-glycoside Ι has strong hemostatic activity.  相似文献   

12.
报告从日本续断根部的乙醇提取物中分得二个新的五糖三萜皂甙,应用一维SEMDY和旋转坐标NOE差谱等NMR新技术互相配合的方法对它们的结构进行了研究,确定为:3-O-α-L-吡喃鼠李糖(1→3)-β-D-吡喃葡萄糖(1→3)-α-L-吡喃鼠李糖(1→2)-α-L-吡喃阿拉伯糖-常春藤甙元-28-O-β-吡喃葡萄糖酯甙(1),和3-O-[β-D-吡喃葡萄糖(1→4)] [α-L-吡喃鼠李糖(1→3)]-β-D-吡喃葡萄糖(1→3)-α-L-吡喃鼠李糖(1→2)-α-L-吡喃阿拉伯糖-齐墩果酸(2)·结果表明,一维SEMDY和旋转坐标NOE差谱技术互相配合的方法测定寡糖链结构十分有效,高度重叠的糖基1H-NMR信号可按一定规律分离,容易鉴别,糖基之间的连接顺序和连接位置可以准确测定,不需要对化合物进行化学降解或衍生化。  相似文献   

13.
Chemical investigation of the glandular trichome exudate from Geranium carolinianum L. (Geraniaceae) led to the characterization of unique disaccharide derivatives, n-octyl 4-O-isobutyryl-α-L-rhamnopyranosyl-(1→2)-6-O-isobutyryl-β-D-glucopyranoside (1), n-octyl 4-O-isobutyryl-α-L-rhamnopyranosyl-(1→2)-6-O-(2-methylbutyryl)-β-D-glucopyranoside (2) and n-octyl 4-O-(2-methylbutyryl)-α-L-rhamnopyranosyl-(1→2)-6-O-isobutyryl-β-D-glucopyranoside (3), named caroliniasides A-C, respectively. These structures were determined by spectral means. n-Alkyl glycoside derivatives have been isolated from the glandular trichome exudates for the first time. This rare type of secondary metabolites could be applicable to chemotaxonomic perspective because they are found in glandular trichome exudates of plants belonging to the genus Geranium, according to our studies.  相似文献   

14.
A new steroidal glycoside (1), (25R)-14α, 17α-hydroxyspirost-5-en-3β-yl 3-O-α-L-rhamnpyranosyl-(1 → 2)-β-D-glucopyranosyl-(1 → 3)-β-D-glucopyranoside, together with three known steroidal glycosides, (25R)-3β-hydroxyspirost-5-en-1β-yl-3-O-α-L-rhamnopyranosyl-(1 → 2)-O-β-D-xylopyranosyl-(1 → 3)-α-L-arabinopyranoside (2), Cixi-ophiopogon B (3) and Cixi-ophiopogon A (4), were obtained from the tuberous roots of Ophiopogon japonicus (Liliaceae). Compound 2 was isolated from the Ophiopogon genus for the first time. Their structures were identified on the basis of extensive mass and nuclear magnetic resonance spectroscopic analysis.  相似文献   

15.
The tuber of Ophiopogon japonicus Ker-Gawl. is recorded to have various functions, such as against cardiovascular diseases and anti-bacteria, and used as a potent drug to treat different diseases, especially heart diseases1. Since the first steriodal glycoside was isolated from the plant by Japanese scholars2, much attention has been paid to the studies of the chemical components of O. japonicus in recent decades. Steroidal glycosides as the major glycosides with the aglycones of ruscogenin …  相似文献   

16.
Two steroid glycosides of the spirostan series — nicotianosides A and B — and one glycoside of the furostan series — nicotianoside E — have been isolated from the seeds ofNicotiana tabacum L. Nicotianoside A is (25S)-5α-spirostan-3β-ol 3-O-β-D-glucopyranoside, nicotianoside B is (25S)-5β-spirostan-3β-ol 3-O-[O-α-L-rhamnopyranosyl-(1→2)-gb-D-glucopyranoside], and nicotianoside E is (25S)-5α-furostan-3β,22α,26-triol 26-O-β-glucopyranoside 3-O-[O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside].  相似文献   

17.
From a methanolic extract of the bulbs ofAllium turcomanicum Rgl. we have isolated a new furostanol glycoside, turoside C (I). An acid hydrolysate was found to contain the aglycone — neoagigenin (II) — and the sugars D-xylose, D-glucose, and D-galactose in a ratio of 1:4:1. The structure of the furostanol (I) has been established by methylation, enzymatic hydrolysis, and oxidative cleavage, and also by the oxidative cleavage of (II), as (25S)-5α-furostan-2α,3β,6β,22α,26-pentaol 26-O-β-D-glucopyranoside 3-O-{[O-β-D-xylopyranosyl-(1→3)]-[O-β-D-glucopyranosyl-(1→2)-O-β-D-glucopyranosyl-(1→2)]-O-β-D-glucopyranosyl-(1→4)-β-D-galacto-pyranoside}.  相似文献   

18.
Two new acylated C-glycosylflavones were isolated from the leaves of Iris lactea var. chinensis, and their structures were elucidated on the basis of extensive NMR experiments and mass spectrometry methods and were assigned as 5-hydroxy-4'- methoxyflavone-7-O-(β-D-2''''4''''-diacetylrhamnopyranosyl)-6-C-[ O-(α-L-6'''-acetyl-glucpyranosyl)-1→2-β-D-glucopyrano- side] (irislactin A) and 5-hydroxy-4',7-dimethoxyflavone-6-C-[O-(α-L-2''',3'''-diacetylrhanmo-pyranosyl)-1→ 2-β-D-glucopyranoside] (irislactin B).  相似文献   

19.
The epigeal part ofThalictrum minus L. has yielded a new bidesmoside — thalicoside B — which has the structure of oleanolic acid 28-O-β-D-glucopyranoside 3-O-[O-α-L-rhamnopyranosyl-(1 → 2)-O-β-D-glucopyranosyl-(1 → 3)-α-L-arabinopyranoside].  相似文献   

20.
Two hederagenin glycosides — medicosides E and F — have been isolated from the roots ofMedicago sativa L. (Leguminosae). Medicoside E has the structure of hederagenin 28-O-β-D-glucopyranoside 3-O-[O-β-G-glucopyranosyl-(1→3)-β-D-xylopyranoside]. Medicoside F has the structure of hederagenin 28-O-β-D-glucopyranoside 3-O-[O-β-D-glucopyranosyl-(1→2)-α-L-arabinopyranoside].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号