首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Let U(n,d) be the set of unicyclic graphs on n vertices with diameter d. In this article, we determine the unique graph with minimal least eigenvalue among all graphs in U(n,d). It is found that the extremal graph is different from that for the corresponding problem on maximal eigenvalue as done by Liu et al. [H.Q. Liu, M. Lu, F. Tian, On the spectral radius of unicyclic graphs with fixed diameter, Linear Algebra Appl. 420 (2007) 449-457].  相似文献   

2.
In this paper, we study the largest Laplacian spectral radius of the bipartite graphs with n vertices and k cut edges and the bicyclic bipartite graphs, respectively. Identifying the center of a star K1,k and one vertex of degree n of Km,n, we denote by the resulting graph. We show that the graph (1?k?n-4) is the unique graph with the largest Laplacian spectral radius among the bipartite graphs with n vertices and k cut edges, and (n?7) is the unique graph with the largest Laplacian spectral radius among all the bicyclic bipartite graphs.  相似文献   

3.
In this paper, we give some results on Laplacian spectral radius of graphs with cut vertices, and as their applications, we also determine the unique graph with the largest Laplacian spectral radius among all unicyclic graphs with n vertices and diameter d, 3?d?n−3.  相似文献   

4.
In this paper, we characterize the extremal graph having the maximal Laplacian spectral radius among the connected bipartite graphs with n vertices and k cut vertices, and describe the extremal graph having the minimal least eigenvalue of the adjacency matrices of all the connected graphs with n vertices and k cut edges. We also present lower bounds on the least eigenvalue in terms of the number of cut vertices or cut edges and upper bounds on the Laplacian spectral radius in terms of the number of cut vertices.  相似文献   

5.
Let D(G)=(di,j)n×n denote the distance matrix of a connected graph G with order n, where dij is equal to the distance between vi and vj in G. The largest eigenvalue of D(G) is called the distance spectral radius of graph G, denoted by ?(G). In this paper, some graft transformations that decrease or increase ?(G) are given. With them, for the graphs with both order n and k pendant vertices, the extremal graphs with the minimum distance spectral radius are completely characterized; the extremal graph with the maximum distance spectral radius is shown to be a dumbbell graph (obtained by attaching some pendant edges to each pendant vertex of a path respectively) when 2≤kn−2; for k=1,2,3,n−1, the extremal graphs with the maximum distance spectral radius are completely characterized.  相似文献   

6.
In the paper, we identify graphs with the maximal signless Laplacian spectral radius among all the unicyclicgraphs with n vertices of diameter d.  相似文献   

7.
Families of finite graphs of large girth were introduced in classical extremal graph theory. One important theoretical result here is the upper bound on the maximal size of the graph with girth ?2d established in Even Circuit Theorem by P. Erdös. We consider some results on such algebraic graphs over any field. The upper bound on the dimension of variety of edges for algebraic graphs of girth ?2d is established. Getting the lower bound, we use the family of bipartite graphs D(n,K) with n?2 over a field K, whose partition sets are two copies of the vector space Kn. We consider the problem of constructing homogeneous algebraic graphs with a prescribed girth and formulate some problems motivated by classical extremal graph theory. Finally, we present a very short survey on applications of finite homogeneous algebraic graphs to coding theory and cryptography.  相似文献   

8.
In this paper, we show that among all the connected graphs with n vertices and k cut vertices, the maximal signless Laplacian spectral radius is attained uniquely at the graph Gn,k, where Gn,k is obtained from the complete graph Kn-k by attaching paths of almost equal lengths to all vertices of Kn-k. We also give a new proof of the analogous result for the spectral radius of the connected graphs with n vertices and k cut vertices (see [A. Berman, X.-D. Zhang, On the spectral radius of graphs with cut vertices, J. Combin. Theory Ser. B 83 (2001) 233-240]). Finally, we discuss the limit point of the maximal signless Laplacian spectral radius.  相似文献   

9.
In this paper, we consider the following problem: of all tricyclic graphs or trees of order n with k pendant vertices (n,k fixed), which achieves the maximal signless Laplacian spectral radius?We determine the graph with the largest signless Laplacian spectral radius among all tricyclic graphs with n vertices and k pendant vertices. Then we show that the maximal signless Laplacian spectral radius among all trees of order n with k pendant vertices is obtained uniquely at Tn,k, where Tn,k is a tree obtained from a star K1,k and k paths of almost equal lengths by joining each pendant vertex to one end-vertex of one path. We also discuss the signless Laplacian spectral radius of Tn,k and give some results.  相似文献   

10.
Let 𝒰(n,?d) be the class of unicyclic graphs on n vertices with diameter d. This article presents an edge-grafting theorem on Laplacian spectra of graphs. By applying this theorem, we determine the unique graph with the maximum Laplacian spectral radius in 𝒰(n,?d). This extremal graph is different from that for the corresponding problem on the adjacency spectral radius as done by Liu et al. [Q. Liu, M. Lu, and F. Tian, On the spectral radius of unicyclic graphs with fixed diameter, Linear Algebra Appl. 420 (2007), 449–457].  相似文献   

11.
In this paper, we determine the unique graph with minimum distance spectral radius among all connected bipartite graphs of order n with a given matching number. Moreover, we characterize the graphs with minimal distance spectral radius in the class of all connected bipartite graphs with a given vertex connectivity.  相似文献   

12.
Let e(m, n), o(m, n), bsc(m, n) be the number of unlabelled bipartite graphs with an even number of edges whose partite sets have m vertices and n vertices, the number of those with an odd number of edges, and the number of unlabelled bipartite self-complementary graphs whose partite sets have m vertices and n vertices, respectively. Then this paper shows that the equality bsc(m, n) = e(m, n) ? o(m, n) holds.  相似文献   

13.
For a connected simple graph G, the eccentricity ec(v) of a vertex v in G is the distance from v to a vertex farthest from v, and d(v) denotes the degree of a vertex v. The eccentric connectivity index of G, denoted by ξc(G), is defined as v∈V(G)d(v)ec(v). In this paper, we will determine the graphs with maximal eccentric connectivity index among the connected graphs with n vertices and m edges(n ≤ m ≤ n + 4), and propose a conjecture on the graphs with maximal eccentric connectivity index among the connected graphs with n vertices and m edges(m ≥ n + 5).  相似文献   

14.
Bicyclic graphs are connected graphs in which the number of edges equals the number of vertices plus one. In this paper we determine the graph with the largest spectral radius among all bicyclic graphs with n vertices and diameter d. As an application, we give first three graphs among all bicyclic graphs on n vertices, ordered according to their spectral radii in decreasing order.  相似文献   

15.
Let F(n,e) be the collection of all simple graphs with n vertices and e edges, and for GF(n,e) let P(G;λ) be the chromatic polynomial of G. A graph GF(n,e) is said to be optimal if another graph HF(n,e) does not exist with P(H;λ)?P(G;λ) for all λ, with strict inequality holding for some λ. In this paper we derive necessary conditions for bipartite graphs to be optimal, and show that, contrarily to the case of lower bounds, one can find values of n and e for which optimal graphs are not unique. We also derive necessary conditions for bipartite graphs to have the greatest number of cycles of length 4.  相似文献   

16.
We examine classes of extremal graphs for the inequality γ(G)?|V|-max{d(v)+βv(G)}, where γ(G) is the domination number of graph G, d(v) is the degree of vertex v, and βv(G) is the size of a largest matching in the subgraph of G induced by the non-neighbours of v. This inequality improves on the classical upper bound |V|-maxd(v) due to Claude Berge. We give a characterization of the bipartite graphs and of the chordal graphs that achieve equality in the inequality. The characterization implies that the extremal bipartite graphs can be recognized in polynomial time, while the corresponding problem remains NP-complete for the extremal chordal graphs.  相似文献   

17.
We study majorants (minorants) for the classes of n-vertex diameter d graphs, that is, the extremal graphs on which the sharp upper (lower) bounds are attained for the number of distinct radius i balls for every i ≥ 0. We explicitly describe the minorants for all values of n and d, determine when the class of n-vertex diameter d graphs contains majorants, and describe these extremal graphs.  相似文献   

18.
In this paper, the upper and lower bounds for the quotient of spectral radius (Laplacian spectral radius, signless Laplacian spectral radius) and the clique number together with the corresponding extremal graphs in the class of connected graphs with n vertices and clique number ω(2 ≤ ωn) are determined. As a consequence of our results, two conjectures given in Aouchiche (2006) and Hansen (2010) are proved.  相似文献   

19.
A bicyclic graph is a connected graph in which the number of edges equals the number of vertices plus one. Let Δ(G) and ρ(G) denote the maximum degree and the spectral radius of a graph G, respectively. Let B(n) be the set of bicyclic graphs on n vertices, and B(n,Δ)={GB(n)∣Δ(G)=Δ}. When Δ≥(n+3)/2 we characterize the graph which alone maximizes the spectral radius among all the graphs in B(n,Δ). It is also proved that for two graphs G1 and G2 in B(n), if Δ(G1)>Δ(G2) and Δ(G1)≥⌈7n/9⌉+9, then ρ(G1)>ρ(G2).  相似文献   

20.
We introduce revlex-initial 0/1-polytopes as the convex hulls of reverse-lexicographically initial subsets of 0/1-vectors. These polytopes are special knapsack-polytopes. It turns out that they have remarkable extremal properties. In particular, we use these polytopes in order to prove that the minimum numbers gnfac(d,n) of facets and the minimum average degree gavdeg(d,n) of the graph of a d-dimensional 0/1-polytope with n vertices satisfy gnfac(d,n)?3d and gavdeg(d,n)?d+4. We furthermore show that, despite the sparsity of their graphs, revlex-initial 0/1-polytopes satisfy a conjecture due to Mihail and Vazirani, claiming that the graphs of 0/1-polytopes have edge-expansion at least one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号