首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The least eigenvalue of the 0-1 adjacency matrix of a graph is denoted λ G. In this paper all graphs with λ(G) greater than ?2 are characterized. Such a graph is a generalized line graph of the form L(T;1,0,…,0), L(T), L(H), where T is a tree and H is unicyclic with an odd cycle, or is one of 573 graphs that arise from the root system E8. If G is regular with λ(G)>?2, then Gis a clique or an odd circuit. These characterizations are used for embedding problems; λR(H) = sup{λ(G)z.sfnc;HinG; Gregular}. H is an odd circuit, a path, or a complete graph iff λR(H)> ?2. For any other line graph H, λR(H) = ?2. A similar result holds for complete multipartite graphs.  相似文献   

2.
Suppose G is a graph and λ1,λ2,…,λn are the eigenvalues of G. The Estrada index EE(G) of G is defined as the sum of eλi, 1in. In this paper some new upper bounds for the Estrada index of bipartite graphs are presented. We apply our result on a (4,6)-fullerene to improve our bound given in an earlier paper.  相似文献   

3.
A graph H is imbedded in a graph G if a subset of the vertices of G determines a subgraph isomorphic to H. If λ(G) is the least eigenvalue of G and kR(H) = lim supd→∞ {λ(G)| H imbedded in G; G regular and connected; diam(G) > d; deg(G) > d}, then λ(H) ? 2 ≤ kR(H) ≤ λ(H) with these bounds being the best possible. Given a graph H, there exist arbitrarily large families of isospectral graphs such that H can be imbedded in each member of the family.  相似文献   

4.
Let P(G,λ) be the chromatic polynomial of a graph G. Two graphs G and H are said to be chromatically equivalent, denoted GH, if P(G,λ)=P(H,λ). We write [G]={HHG}. If [G]={G}, then G is said to be chromatically unique. In this paper, we first characterize certain complete 5-partite graphs with 5n+3 vertices according to the number of 6-independent partitions of G. Using these results, we investigate the chromaticity of G with certain star or matching deleted. As a by-product, many new families of chromatically unique complete 5-partite graphs with certain star or matching deleted are obtained.  相似文献   

5.
Brooks' Theorem says that if for a graph G,Δ(G)=n, then G is n-colourable, unless (1) n=2 and G has an odd cycle as a component, or (2) n>2 and Kn+1 is a component of G. In this paper we prove that if a graph G has none of some three graphs (K1,3;K5?e and H) as an induced subgraph and if Δ(G)?6 and d(G)<Δ(G), then χ(G)<Δ(G). Also we give examples to show that the hypothesis Δ(G)?6 can not be non-trivially relaxed and the graph K5?e can not be removed from the hypothesis. Moreover, for a graph G with none of K1,3;K5?e and H as an induced subgraph, we verify Borodin and Kostochka's conjecture that if for a graph G,Δ(G)?9 and d(G)<Δ(G), then χ(G)<Δ(G).  相似文献   

6.
We consider homomorphism properties of a random graph G(n,p), where p is a function of n. A core H is great if for all eE(H), there is some homomorphism from He to H that is not onto. Great cores arise in the study of uniquely H-colourable graphs, where two inequivalent definitions arise for general cores H. For a large range of p, we prove that with probability tending to 1 as n, GG(n,p) is a core that is not great. Further, we give a construction of infinitely many non-great cores where the two definitions of uniquely H-colourable coincide.  相似文献   

7.
A graph G of order p is k-factor-critical,where p and k are positive integers with the same parity, if the deletion of any set of k vertices results in a graph with a perfect matching. G is called maximal non-k-factor-critical if G is not k-factor-critical but G+e is k-factor-critical for every missing edge eE(G). A connected graph G with a perfect matching on 2n vertices is k-extendable, for 1?k?n-1, if for every matching M of size k in G there is a perfect matching in G containing all edges of M. G is called maximal non-k-extendable if G is not k-extendable but G+e is k-extendable for every missing edge eE(G) . A connected bipartite graph G with a bipartitioning set (X,Y) such that |X|=|Y|=n is maximal non-k-extendable bipartite if G is not k-extendable but G+xy is k-extendable for any edge xyE(G) with xX and yY. A complete characterization of maximal non-k-factor-critical graphs, maximal non-k-extendable graphs and maximal non-k-extendable bipartite graphs is given.  相似文献   

8.
Yanfeng Luo 《Discrete Mathematics》2009,309(20):5943-1987
Let G be a finite group and A a nonempty subset (possibly containing the identity element) of G. The Bi-Cayley graph X=BC(G,A) of G with respect to A is defined as the bipartite graph with vertex set G×{0,1} and edge set {{(g,0),(sg,1)}∣gG,sA}. A graph Γ admitting a perfect matching is called n-extendable if ∣V(Γ)∣≥2n+2 and every matching of size n in Γ can be extended to a perfect matching of Γ. In this paper, the extendability of Bi-Cayley graphs of finite abelian groups is explored. In particular, 2-extendable and 3-extendable Bi-Cayley graphs of finite abelian groups are characterized.  相似文献   

9.
Let G=(V,E) be a finite graph, where |V|=n?2 and |E|=e?1. A vertex-magic total labeling is a bijection λ from VE to the set of consecutive integers {1,2,…,n+e} with the property that for every vV, for some constant h. Such a labeling is strong if λ(V)={1,2,…,n}. In this paper, we prove first that the minimum degree of a strongly vertex-magic graph is at least two. Next, we show that if , then the minimum degree of a strongly vertex-magic graph is at least three. Further, we obtain upper and lower bounds of any vertex degree in terms of n and e. As a consequence we show that a strongly vertex-magic graph is maximally edge-connected and hamiltonian if the number of edges is large enough. Finally, we prove that semi-regular bipartite graphs are not strongly vertex-magic graphs, and we provide strongly vertex-magic total labeling of certain families of circulant graphs.  相似文献   

10.
For a graph G=(V,E) with vertex-set V={1,2,…,n}, which is allowed to have parallel edges, and for a field F, let S(G;F) be the set of all F-valued symmetric n×n matrices A which represent G. The maximum corank of a graph G is the maximum possible corank over all AS(G;F). If (G1,G2) is a (?2)-separation, we give a formula which relates the maximum corank of G to the maximum corank of some small variations of G1 and G2.  相似文献   

11.
G.C. Lau  Y.H. Peng 《Discrete Mathematics》2006,306(22):2893-2900
For a graph G, let P(G) be its chromatic polynomial. Two graphs G and H are chromatically equivalent if P(G)=P(H). A graph G is chromatically unique if P(H)=P(G) implies that HG. In this paper, we classify the chromatic classes of graphs obtained from K2,2,2Pm(m?3), (K2,2,2-e)∪Pm(m?5) and (K2,2,2-2e)∪Pm(m?6) by identifying the end-vertices of the path Pm with any two vertices of K2,2,2, K2,2,2-e and K2,2,2-2e, respectively, where e and 2e are, respectively, an edge and any two edges of K2,2,2. As a by-product of this, we obtain some families of chromatically unique and chromatically equivalent classes of graphs.  相似文献   

12.
G.C. Lau  Y.H. Peng 《Discrete Mathematics》2009,309(12):4089-4094
Let P(G,λ) be the chromatic polynomial of a graph G. A graph G is chromatically unique if for any graph H, P(H,λ)=P(G,λ) implies H is isomorphic to G. For integers k≥0, t≥2, denote by K((t−1)×p,p+k) the complete t-partite graph that has t−1 partite sets of size p and one partite set of size p+k. Let K(s,t,p,k) be the set of graphs obtained from K((t−1)×p,p+k) by adding a set S of s edges to the partite set of size p+k such that 〈S〉 is bipartite. If s=1, denote the only graph in K(s,t,p,k) by K+((t−1)×p,p+k). In this paper, we shall prove that for k=0,1 and p+ks+2, each graph GK(s,t,p,k) is chromatically unique if and only if 〈S〉 is a chromatically unique graph that has no cut-vertex. As a direct consequence, the graph K+((t−1)×p,p+k) is chromatically unique for k=0,1 and p+k≥3.  相似文献   

13.
Let G=(V,E) be a graph with V={1,2,…,n}. Define S(G) as the set of all n×n real-valued symmetric matrices A=[aij] with aij≠0,ij if and only if ijE. By M(G) we denote the largest possible nullity of any matrix AS(G). The path cover number of a graph G, denoted P(G), is the minimum number of vertex disjoint paths occurring as induced subgraphs of G which cover all the vertices of G.There has been some success with relating the path cover number of a graph to its maximum nullity. Johnson and Duarte [5], have shown that for a tree T,M(T)=P(T). Barioli et al. [2], show that for a unicyclic graph G,M(G)=P(G) or M(G)=P(G)-1. Notice that both families of graphs are outerplanar. We show that for any outerplanar graph G,M(G)?P(G). Further we show that for any partial 2-path G,M(G)=P(G).  相似文献   

14.
J. Gómez 《Discrete Mathematics》2008,308(15):3361-3372
Let G=(V,E) be a finite non-empty graph, where V and E are the sets of vertices and edges of G, respectively, and |V|=n and |E|=e. A vertex-magic total labeling (VMTL) is a bijection λ from VE to the consecutive integers 1,2,…,n+e with the property that for every vV, , for some constant h. Such a labeling is super if λ(V)={1,2,…,n}. In this paper, two new methods to obtain super VMTLs of graphs are put forward. The first, from a graph G with some characteristics, provides a super VMTL to the graph kG graph composed by the disjoint unions of k copies of G, for a large number of values of k. The second, from a graph G0 which admits a super VMTL; for instance, the graph kG, provides many super VMTLs for the graphs obtained from G0 by means of the addition to it of various sets of edges.  相似文献   

15.
Linear choosability of graphs   总被引:1,自引:0,他引:1  
A proper vertex coloring of a non-oriented graph G is linear if the graph induced by the vertices of any two color classes is a forest of paths. A graph G is linearly L-list colorable if for a given list assignment L={L(v):vV(G)}, there exists a linear coloring c of G such that c(v)∈L(v) for all vV(G). If G is linearly L-list colorable for any list assignment with |L(v)|?k for all vV(G), then G is said to be linearly k-choosable. In this paper, we investigate the linear choosability for some families of graphs: graphs with small maximum degree, with given maximum average degree, outerplanar and planar graphs. Moreover, we prove that deciding whether a bipartite subcubic planar graph is linearly 3-colorable is an NP-complete problem.  相似文献   

16.
Let G=(X,Y;E) be a balanced bipartite graph of order 2n. The path-cover numberpc(H) of a graph H is the minimum number of vertex-disjoint paths that use up all the vertices of H. SV(G) is called a balanced set of G if |SX|=|SY|. In this paper, we will give some sufficient conditions for a balanced bipartite graph G satisfying that for every balanced set S, there is a bi-cycle of every length from |S|+2pc(〈S〉) up to 2n through S.  相似文献   

17.
S is a local maximum stable set of a graph G, and we write SΨ(G), if the set S is a maximum stable set of the subgraph induced by SN(S), where N(S) is the neighborhood of S. In Levit and Mandrescu (2002) [5] we have proved that Ψ(G) is a greedoid for every forest G. The cases of bipartite graphs and triangle-free graphs were analyzed in Levit and Mandrescu (2003) [6] and Levit and Mandrescu (2007) [7] respectively.In this paper we give necessary and sufficient conditions for Ψ(G) to form a greedoid, where G is:
(a)
the disjoint union of a family of graphs;
(b)
the Zykov sum of a family of graphs;
(c)
the corona X°{H1,H2,…,Hn} obtained by joining each vertex x of a graph X to all the vertices of a graph Hx.
  相似文献   

18.
A near perfect matching is a matching saturating all but one vertex in a graph. If G is a connected graph and any n independent edges in G are contained in a near perfect matching, then G is said to be defect n-extendable. If for any edge e in a defect n-extendable graph G, Ge is not defect n-extendable, then G is minimal defect n-extendable. The minimum degree and the connectivity of a graph G are denoted by δ(G) and κ(G) respectively. In this paper, we study the minimum degree of minimal defect n-extendable bipartite graphs. We prove that a minimal defect 1-extendable bipartite graph G has δ(G)=1. Consider a minimal defect n-extendable bipartite graph G with n≥2, we show that if κ(G)=1, then δ(G)≤n+1 and if κ(G)≥2, then 2≤δ(G)=κ(G)≤n+1. In addition, graphs are also constructed showing that, in all cases but one, there exist graphs with minimum degree that satisfies the established bounds.  相似文献   

19.
For any two graphs F and G, let hom(F,G) denote the number of homomorphisms FG, that is, adjacency preserving maps V(F)→V(G) (graphs may have loops but no multiple edges). We characterize graph parameters f for which there exists a graph F such that f(G)=hom(F,G) for each graph G.The result may be considered as a certain dual of a characterization of graph parameters of the form hom(.,H), given by Freedman, Lovász and Schrijver [M. Freedman, L. Lovász, A. Schrijver, Reflection positivity, rank connectivity, and homomorphisms of graphs, J. Amer. Math. Soc. 20 (2007) 37-51]. The conditions amount to the multiplicativity of f and to the positive semidefiniteness of certain matrices N(f,k).  相似文献   

20.
For a simple graph G let NG(u) be the (open) neighborhood of vertex uV(G). Then G is neighborhood anti-Sperner (NAS) if for every u there is a vV(G)?{u} with NG(u)⊆NG(v). And a graph H is neighborhood distinct (ND) if every neighborhood is distinct, i.e., if NH(u)≠NH(v) when uv, for all u and vV(H).In Porter and Yucas [T.D. Porter, J.L. Yucas. Graphs whose vertex-neighborhoods are anti-sperner, Bulletin of the Institute of Combinatorics and its Applications 44 (2005) 69-77] a characterization of regular NAS graphs was given: ‘each regular NAS graph can be obtained from a host graph by replacing vertices by null graphs of appropriate sizes, and then joining these null graphs in a prescribed manner’. We extend this characterization to all NAS graphs, and give algorithms to construct all NAS graphs from host ND graphs. Then we find and classify all connected r-regular NAS graphs for r=0,1,…,6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号