首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
On the Laplacian spectral radii of bicyclic graphs   总被引:1,自引:0,他引:1  
A graph G of order n is called a bicyclic graph if G is connected and the number of edges of G is n+1. Let B(n) be the set of all bicyclic graphs on n vertices. In this paper, we obtain the first four largest Laplacian spectral radii among all the graphs in the class B(n) (n≥7) together with the corresponding graphs.  相似文献   

2.
The spectral spread of a graph is defined to be the difference between the largest and the least eigenvalue of the adjacency matrix of the graph. A graph G is said to be bicyclic, if G is connected and |E(G)| = |V(G)|+ 1. Let B(n, g) be the set of bicyclic graphs on n vertices with girth g. In this paper some properties about the least eigenvalues of graphs are given, by which the unique graph with maximal spectral spread in B(n, g) is determined.  相似文献   

3.
4.
Let D(G)=(di,j)n×n denote the distance matrix of a connected graph G with order n, where dij is equal to the distance between vi and vj in G. The largest eigenvalue of D(G) is called the distance spectral radius of graph G, denoted by ?(G). In this paper, some graft transformations that decrease or increase ?(G) are given. With them, for the graphs with both order n and k pendant vertices, the extremal graphs with the minimum distance spectral radius are completely characterized; the extremal graph with the maximum distance spectral radius is shown to be a dumbbell graph (obtained by attaching some pendant edges to each pendant vertex of a path respectively) when 2≤kn−2; for k=1,2,3,n−1, the extremal graphs with the maximum distance spectral radius are completely characterized.  相似文献   

5.
It was conjectured that for each simple graph G=(V,E) with n=|V(G)| vertices and m=|E(G)| edges, it holds M2(G)/mM1(G)/n, where M1 and M2 are the first and second Zagreb indices. Hansen and Vuki?evi? proved that it is true for all chemical graphs and does not hold in general. Also the conjecture was proved for all trees, unicyclic graphs, and all bicyclic graphs except one class. In this paper, we show that for every positive integer k, there exists a connected graph such that mn=k and the conjecture does not hold. Moreover, by introducing some transformations, we show that M2/(m−1)>M1/n for all bicyclic graphs and it does not hold for general graphs. Using these transformations we give new and shorter proofs of some known results.  相似文献   

6.
By the signless Laplacian of a (simple) graph G we mean the matrix Q(G)=D(G)+A(G), where A(G),D(G) denote respectively the adjacency matrix and the diagonal matrix of vertex degrees of G. It is known that connected graphs G that maximize the signless Laplacian spectral radius ρ(Q(G)) over all connected graphs with given numbers of vertices and edges are (degree) maximal. For a maximal graph G with n vertices and r distinct vertex degrees δr>δr-1>?>δ1, it is proved that ρ(Q(G))<ρ(Q(H)) for some maximal graph H with n+1 (respectively, n) vertices and the same number of edges as G if either G has precisely two dominating vertices or there exists an integer such that δi+δr+1-i?n+1 (respectively, δi+δr+1-i?δl+δr-l+1). Graphs that maximize ρ(Q(G)) over the class of graphs with m edges and m-k vertices, for k=0,1,2,3, are completely determined.  相似文献   

7.
Let G be a graph with n vertices and μ(G) be the largest eigenvalue of the adjacency matrix of G. We study how large μ(G) can be when G does not contain cycles and paths of specified order. In particular, we determine the maximum spectral radius of graphs without paths of given length, and give tight bounds on the spectral radius of graphs without given even cycles. We also raise a number of open problems.  相似文献   

8.
A set S of vertices in a graph G is a dominating set of G if every vertex of V(G)?S is adjacent to some vertex in S. The minimum cardinality of a dominating set of G is the domination number of G, denoted as γ(G). Let Pn and Cn denote a path and a cycle, respectively, on n vertices. Let k1(F) and k2(F) denote the number of components of a graph F that are isomorphic to a graph in the family {P3,P4,P5,C5} and {P1,P2}, respectively. Let L be the set of vertices of G of degree more than 2, and let GL be the graph obtained from G by deleting the vertices in L and all edges incident with L. McCuaig and Shepherd [W. McCuaig, B. Shepherd, Domination in graphs with minimum degree two, J. Graph Theory 13 (1989) 749-762] showed that if G is a connected graph of order n≥8 with δ(G)≥2, then γ(G)≤2n/5, while Reed [B.A. Reed, Paths, stars and the number three, Combin. Probab. Comput. 5 (1996) 277-295] showed that if G is a graph of order n with δ(G)≥3, then γ(G)≤3n/8. As an application of Reed’s result, we show that if G is a graph of order n≥14 with δ(G)≥2, then .  相似文献   

9.
Let D(G)=(di,j)n×n denote the distance matrix of a connected graph G with order n, where dij is equal to the distance between vi and vj in G. The largest eigenvalue of D(G) is called the distance spectral radius of graph G, denoted by ?(G). In this paper, we give some graft transformations that decrease and increase ?(G) and prove that the graph (obtained from the star Sn on n (n is not equal to 4, 5) vertices by adding an edge connecting two pendent vertices) has minimal distance spectral radius among unicyclic graphs on n vertices; while (obtained from a triangle K3 by attaching pendent path Pn−3 to one of its vertices) has maximal distance spectral radius among unicyclic graphs on n vertices.  相似文献   

10.
Let G be a simple graph on n vertices. In this paper, we prove that if G satisfies the condition that d(x)+d(y)≥n for each xyE(G), then G has no nowhere-zero 3-flow if and only if G is either one of the five graphs on at most 6 vertices or one of a very special class of graphs on at least 6 vertices.  相似文献   

11.
The Randi? index of a graph G is defined as , where d(u) is the degree of vertex u and the summation goes over all pairs of adjacent vertices u, v. A conjecture on R(G) for connected graph G is as follows: R(G)≥r(G)−1, where r(G) denotes the radius of G. We proved that the conjecture is true for biregular graphs, connected graphs with order n≤10 and tricyclic graphs.  相似文献   

12.
In this paper, we study the largest Laplacian spectral radius of the bipartite graphs with n vertices and k cut edges and the bicyclic bipartite graphs, respectively. Identifying the center of a star K1,k and one vertex of degree n of Km,n, we denote by the resulting graph. We show that the graph (1?k?n-4) is the unique graph with the largest Laplacian spectral radius among the bipartite graphs with n vertices and k cut edges, and (n?7) is the unique graph with the largest Laplacian spectral radius among all the bicyclic bipartite graphs.  相似文献   

13.
Brooks' Theorem says that if for a graph G,Δ(G)=n, then G is n-colourable, unless (1) n=2 and G has an odd cycle as a component, or (2) n>2 and Kn+1 is a component of G. In this paper we prove that if a graph G has none of some three graphs (K1,3;K5?e and H) as an induced subgraph and if Δ(G)?6 and d(G)<Δ(G), then χ(G)<Δ(G). Also we give examples to show that the hypothesis Δ(G)?6 can not be non-trivially relaxed and the graph K5?e can not be removed from the hypothesis. Moreover, for a graph G with none of K1,3;K5?e and H as an induced subgraph, we verify Borodin and Kostochka's conjecture that if for a graph G,Δ(G)?9 and d(G)<Δ(G), then χ(G)<Δ(G).  相似文献   

14.
Béla Csaba 《Discrete Mathematics》2008,308(19):4322-4331
Call a simple graph H of order nwell-separable, if by deleting a separator set of size o(n) the leftover will have components of size at most o(n). We prove, that bounded degree well-separable spanning subgraphs are easy to embed: for every γ>0 and positive integer Δ there exists an n0 such that if n>n0, Δ(H)?Δ for a well-separable graph H of order n and δ(G)?(1-1/2(χ(H)-1)+γ)n for a simple graph G of order n, then HG. We extend our result to graphs with small band-width, too.  相似文献   

15.
In this paper, we show that among all the connected graphs with n vertices and k cut vertices, the maximal signless Laplacian spectral radius is attained uniquely at the graph Gn,k, where Gn,k is obtained from the complete graph Kn-k by attaching paths of almost equal lengths to all vertices of Kn-k. We also give a new proof of the analogous result for the spectral radius of the connected graphs with n vertices and k cut vertices (see [A. Berman, X.-D. Zhang, On the spectral radius of graphs with cut vertices, J. Combin. Theory Ser. B 83 (2001) 233-240]). Finally, we discuss the limit point of the maximal signless Laplacian spectral radius.  相似文献   

16.
The nullity of a graph G, denoted by η(G), is the multiplicity of the eigenvalue zero in its spectrum. Cheng and Liu [B. Cheng, B. Liu, On the nullity of graphs, Electron. J. Linear Algebra 16 (2007) 60-67] characterized the extremal graphs attaining the upper bound n-2 and the second upper bound n-3. In this paper, as the continuance of it, we determine the extremal graphs with pendent vertices achieving the third upper bound n-4 and fourth upper bound n-5. We then proceed recursively to construct all graphs with pendent vertices which satisfy η(G)>0. Our results provide a unified approach to determine n-vertex unicyclic (respectively, bicyclic and tricyclic) graphs which achieve the maximal and second maximal nullity and characterize n-vertex extremal trees attaining the second and third maximal nullity. As a consequence we, respectively, determine the nullity sets of trees, unicyclic graphs, bicyclic graphs and tricyclic graphs on n vertices.  相似文献   

17.
For a (simple) graph G, the signless Laplacian of G is the matrix A(G)+D(G), where A(G) is the adjacency matrix and D(G) is the diagonal matrix of vertex degrees of G; the reduced signless Laplacian of G is the matrix Δ(G)+B(G), where B(G) is the reduced adjacency matrix of G and Δ(G) is the diagonal matrix whose diagonal entries are the common degrees for vertices belonging to the same neighborhood equivalence class of G. A graph is said to be (degree) maximal if it is connected and its degree sequence is not majorized by the degree sequence of any other connected graph. For a maximal graph, we obtain a formula for the characteristic polynomial of its reduced signless Laplacian and use the formula to derive a localization result for its reduced signless Laplacian eigenvalues, and to compare the signless Laplacian spectral radii of two well-known maximal graphs. We also obtain a necessary condition for a maximal graph to have maximal signless Laplacian spectral radius among all connected graphs with given numbers of vertices and edges.  相似文献   

18.
Ying Liu  Yue Liu 《Discrete Mathematics》2009,309(13):4315-1643
Fielder [M. Fielder, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973) 298-305] has turned out that G is connected if and only if its algebraic connectivity a(G)>0. In 1998, Fallat and Kirkland [S.M. Fallat, S. Kirkland, Extremizing algebraic connectivity subject to graph theoretic constraints, Electron. J. Linear Algebra 3 (1998) 48-74] posed a conjecture: if G is a connected graph on n vertices with girth g≥3, then a(G)≥a(Cn,g) and that equality holds if and only if G is isomorphic to Cn,g. In 2007, Guo [J.M. Guo, A conjecture on the algebraic connectivity of connected graphs with fixed girth, Discrete Math. 308 (2008) 5702-5711] gave an affirmatively answer for the conjecture. In this paper, we determine the second and the third smallest algebraic connectivity among all unicyclic graphs with vertices.  相似文献   

19.
Let G be a digraph with n vertices and m arcs without loops and multiarcs. The spectral radius ρ(G) of G is the largest eigenvalue of its adjacency matrix. In this paper, sharp upper and lower bounds on ρ(G) are given. We show that some known bounds can be obtained from our bounds.  相似文献   

20.
Let G be a graph of order n and maximum degree Δ(G) and let γt(G) denote the minimum cardinality of a total dominating set of a graph G. A graph G with no isolated vertex is the total domination vertex critical if for any vertex v of G that is not adjacent to a vertex of degree one, the total domination number of Gv is less than the total domination number of G. We call these graphs γt-critical. For any γt-critical graph G, it can be shown that nΔ(G)(γt(G)−1)+1. In this paper, we prove that: Let G be a connected γt-critical graph of order n (n≥3), then n=Δ(G)(γt(G)−1)+1 if and only if G is regular and, for each vV(G), there is an AV(G)−{v} such that N(v)∩A=0?, the subgraph induced by A is 1-regular, and every vertex in V(G)−A−{v} has exactly one neighbor in A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号