首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
杨杰  沈惠申 《力学季刊》2002,23(3):342-346
功能梯度材料(FGM)是一类具有广阔应用前景的新型复合材料。本文考虑材料物性参数随坐标和温度变化的特性,研究横向荷载和面内预加荷载作用下FGM矩形板在各种边界条件下的弯曲问题。给出了基于一维微分求积格式的Galerkin技术的半解析方法,并以ZrO2/Ti-6Al-4V板为例考察了材料组分,温度相关性,面内预加荷载,边界约束条件等对FGM板弯曲行为的影响。结果表明,FGM板的弯曲变形介于各向同性陶瓷板与各向同性金属板之间,且随板抗弯刚度的增大而逐步减小,在高温下条件下必须考虑材料物性和温度的相关性。  相似文献   

2.
The statistics (i.e., mean and variance) of temperature and thermal stress are analytically obtained in functionally graded material (FGM) plates with uncertainties in the thermal conductivity and coefficient of linear thermal expansion. These FGM plates are assumed to have arbitrary nonhomogeneous thermal and mechanical properties through the entire thickness of plate and are subjected to deterministic convective heating. The stochastic temperature and thermal stress fields are analysed by assuming the FGM plate is multilayered with distinct, random thermal conductivity and coefficient of linear thermal expansion in each layer. Vodicka’s method, which is a type of integral transform method, and a perturbation method are employed to obtain the analytical solutions for the statistics. The autocorrelation coefficients of each random property and cross-correlation coefficients between different random properties are expressed in exponential function forms as a non-homogeneous Markov random field of discrete space. Numerical calculations are performed for FGM plates composed of partially stabilised zirconia (PSZ) and austenitic stainless steel (SUS304), which have the largest dispersion of the random properties at the place where the volume fractions of the two constituent materials are both 0.5. The effects of the spatial change in material composition, thermal boundary condition and correlation coefficients on the standard deviations of the temperature and thermal stress are discussed.  相似文献   

3.
Based on the classical nonlinear von Karman plate theory, axisymmetric large deflection bending of a functionally graded circular plate is investigated under mechanical, thermal and combined thermal–mechanical loadings, respectively, and axisymmetric thermal post-buckling behavior of a functionally graded circular plate is also investigated. The mechanical and thermal properties of functionally graded material (FGM) are assumed to vary continuously through the thickness of the plate, and obey a simple power law of the volume fraction of the constituents. Governing equations for the problem are derived, and then a shooting method is employed to numerically solve the equations. Effects of material constant n and boundary conditions on the temperature distribution, nonlinear bending, critical buckling temperature and thermal post-buckling behavior of the FGM plate are discussed in details.  相似文献   

4.
In this work, a self-consistent constitutive framework is proposed to describe the behaviour of a generic three-layered system containing a functionally graded material (FGM) layer subjected to thermal loading. Analytical and semi-analytical solutions are obtained to describe the thermo-elastic and thermo-elastoplastic behaviour of a three-layered system consisting of a metallic and a ceramic layer joined together by an FGM layer of arbitrary composition profile. Solutions for the stress distributions in a generic FGM system subjected to arbitrary temperature transient conditions are presented. The homogenisation of the local elastoplastic FGM behaviour in terms of the properties of its individual phases is performed using a self-consistent approach. In this work, power-law strain hardening behaviour is assumed for the FGM metallic phase. The stress distributions within the FGM systems are compared with accurate numerical solutions obtained from finite element analyses and good agreement is found throughout. Solutions are also given for the critical temperature transients required for the onset of plastic deformation within the three-layered systems.  相似文献   

5.
本文研究了热环境中陶瓷-金属-陶瓷功能梯度圆板(S-FGM)的过屈曲和弯曲行为。圆板材料组分的体积分数符合Sigmoid定律,并承受沿圆板厚度方向变化的温度场作用。基于经典板理论,用能量法导出了对称S-FGM圆板静态问题的非线性平衡方程。用打靶法对所得方程进行了数值求解,并利用数值结果研究了不同边界条件、材料的组分、热载荷等因素对对称S-FGM圆板力学行为的影响。数值结果表明:对称S-FGM圆板相较于普通FGM圆板,其力学行为存在一些不同之处,且板的上下表面温升比对S型功能梯度圆板的力学行为有着显著的影响。  相似文献   

6.
This paper presents analyses of the transient temperature fields in an infinite plate, an infinite solid cylinder and a solid sphere made of functionally graded materials (FGMs) under convective boundary conditions. The composition and the thermo-physical properties of the infinite FGM plate, the infinite FGM solid cylinder and the FGM solid sphere are of planar symmetric, axially symmetric and spherically symmetric distributions, respectively. The analytical formulae of the one-dimensional transient temperature fields for the three FGM solids are obtained respectively by using the separation-of-variables method and the variable substitution method. Numerical results reveal that the transient temperature fields of the FGM components exhibit similar shape effect to that of homogeneous components. The present work provides valuable basis for the investigation of the thermal shock resistance of FGMs with various shapes.  相似文献   

7.
为研究金属-FGM-陶瓷 EFBF 复合板的稳态热应力,从热传导规律出发,结合热应力计算公式,建立了该复合板稳态热应 力的研究模型,用有限元和辛普生法分析了T_a=500K和T_b=1800K时,该 复合板的稳态热应力分布并与无梯度两层复合板的结果进行了比较. 结果表明:FGM梯度层的厚度、组分和孔隙率对该EFBF复合板的热应力有不同程度的影响, 此外,有梯度三层复合板的热应力比较缓和,最大拉应力减小29.18%. 此结果为该复合板的设计和应用提供了准确的计算依据.  相似文献   

8.
研究了温度场中非保守功能梯度材料(FGM)圆板的非线性力学行为.基于经典板理论,推导了受非保守力作用的FGM圆板在温度场中的控制微分方程.采用打靶法分析了由陶瓷二氧化锆和金属钛合金两相材料组成的非保守FGM圆板在均匀和非均匀升温场中的非线性力学行为.给出了不同均匀升温和非均匀升温场下,FGM圆板在非保守载荷作用下的平衡...  相似文献   

9.
Crack propagation in a functionally graded plate under thermal shock   总被引:1,自引:0,他引:1  
Summary Thermal cracking in a ceramic/metal functionally graded plate is discussed. When a functionally graded plate is cooled from high temperature, curved or straight crack paths are experimentally observed on the ceramic surface. One of the reasons that make the crack paths to differ are the thermal or mechanical conditions. In order to clarify the influence of these conditions on the crack path, the crack propagation is simulated using finite element method. Received 29 September 1998; accepted for publication 2 August 1999  相似文献   

10.
A postbuckling analysis is presented for a simply supported, shear deformable functionally graded plate with piezoelectric actuators subjected to the combined action of mechanical, electrical and thermal loads. The temperature field considered is assumed to be of uniform distribution over the plate surface and through the plate thickness and the electric field considered only has non-zero-valued component EZ. The material properties of functionally graded materials (FGMs) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and the material properties of both FGM and piezoelectric layers are assumed to be temperature-dependent. The governing equations are based on a higher order shear deformation plate theory that includes thermo-piezoelectric effects. The initial geometric imperfection of the plate is taken into account. Two cases of the in-plane boundary conditions are considered. A two step perturbation technique is employed to determine buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of perfect and imperfect, geometrically mid-plane symmetric FGM plates with fully covered or embedded piezoelectric actuators under different sets of thermal and electric loading conditions. The effects played by temperature rise, volume fraction distribution, applied voltage, the character of in-plane boundary conditions, as well as initial geometric imperfections are studied.  相似文献   

11.
Hong-Liang Dai  Ting Dai 《Meccanica》2014,49(5):1069-1081
An analytic study for thermoelastic bending of a functionally graded material (FGM) cylindrical shell subjected to a uniform transverse mechanical load and non-uniform thermal loads is presented. Based on the classical linear shell theory, the equations with the radial deflection and horizontal displacement are derived out. An arbitrary material property of the FGM cylindrical shell is assumed to vary through the thickness of the cylindrical shell, and exact solution of the problem is obtained by using an analytic method. For the FGM cylindrical shell with fixed and simply supported boundary conditions, the effects of mechanical load, thermal load and the power law exponent on the deformation of the FGM cylindrical shell are analyzed and discussed.  相似文献   

12.
A theoretical model for geometrically nonlinear vibration analysis of thermo-piezoelectrically actuated circular plates made of functionally grade material (FGM) is presented based on Kirchhoff’s–Love hypothesis with von-Karman type geometrical large nonlinear deformations. The material properties of the FG core plate are assumed to be graded in the thickness direction according to the power-law distribution in terms of the volume fractions of the constituents. Dynamic equations and boundary conditions including thermal, elastic and piezoelectric couplings are formulated and solutions are derived. An exact series expansion method combined with perturbation approach is used to model the nonlinear thermo-electro-mechanical vibration behavior of the structure. Control of the FG plate’s nonlinear deflections and natural frequencies using high control voltages is studied and their nonlinear effects are evaluated. Numerical results for FG plates with various mixtures of ceramic and metal are presented in dimensionless forms. A parametric study is also undertaken to highlight the effects of the thermal environment, applied actuator voltage and material composition of the FG core plate on the nonlinear vibration characteristics of the composite structure.  相似文献   

13.
This study attempts to derive the statistics of temperature and thermal stress in functionally graded material (FGM) plates exposed to random external temperatures. The thermomechanical properties of the FGM plates are assumed to vary arbitrarily only in the plate thickness direction. The external temperatures are expressed as random functions with respect to time. The transient temperature field in the FGM plate is determined by solving a nonhomogeneous heat conduction problem for a multilayered plate with linear nonhomogeneous thermal conductivity and different homogeneous heat capacity in each layer. The autocorrelations and power spectrum densities (PSDs) of temperature and thermal stress are derived analytically. These statistics for FGM plates composed of partially stabilised zirconia (PSZ) and austenitic stainless steel (SUS304) are computed under the condition that the fluctuation in the external temperature can be considered as white noise or a stationary Markov process.  相似文献   

14.
热环境中旋转运动功能梯度圆板的强非线性固有振动   总被引:1,自引:0,他引:1  
研究热环境中旋转运动功能梯度圆板的非线性固有振动问题.针对金属-陶瓷功能梯度圆板,考虑几何非线性、材料物理属性参数随温度变化以及材料组分沿厚度方向按幂律分布的情况,应用哈密顿原理推得热环境中旋转运动功能梯度圆板的非线性振动微分方程.考虑周边夹支边界条件,利用伽辽金法得到了横向非线性固有振动方程,并确定了静载荷引起的静挠度.用改进的多尺度法求解强非线性方程,得出非线性固有频率表达式.通过算例,分析了旋转运动功能梯度圆板固有频率随转速、温度等参量的变化情况.结果表明,非线性固有频率随金属含量的增加而降低;随转速和圆板厚度的增大而升高;随功能梯度圆板表面温度的升高而降低.  相似文献   

15.
In this paper, model of the FGM plates resting on two-parameter elastic foundations is put forward by using on physical neutral surface and high-order shear deformation theory. Material properties are assumed to be temperature dependent and vary along the thickness, while Poisson’s ratio depends weakly on temperature change and position and is assumed to be a constant. It is worth noting that physical neutral surface will be changed with temperature. The character of physical neutral surface higher-order shear deformation plate theory is that the displacements have special forms, stretching-bending couplings are eliminated in constitutive equations, and governing equations have the simple and similar forms as homogeneous isotropic plates. The validity of physical neutral surface higher-order shear deformation plate theory can be confirmed by comparing with related researchers’ results. Nonlinear bending approximate solutions of FGM rectangular plates with six cases of boundary conditions are given out using Ritz method, and influences played by different supported boundaries, foundation stiffnesses, thermal environmental conditions, and volume fraction index are discussed in detail.  相似文献   

16.
M. M. Rahman 《Meccanica》2011,46(5):1127-1143
This paper presents heat transfer process in a two-dimensional steady hydromagnetic convective flow of an electrically conducting fluid over a flat plate with partial slip at the surface of the boundary subjected to the convective surface heat flux at the boundary. The analysis accounts for both temperature-dependent viscosity and temperature dependent thermal conductivity. The local similarity equations are derived and solved numerically using the Nachtsheim-Swigert iteration procedure. Results for the dimensionless velocity, temperature and ambient Prandtl number within the boundary layer are displayed graphically delineating the effect of various parameters characterizing the flow. The results show that momentum boundary layer thickness significantly depends on the surface convection parameter, Hartmann number and on the sign of the variable viscosity parameter. The results also show that plate surface temperature is higher when there is no slip at the plate compared to its presence. For both slip and no-slip cases surface temperature of the plate can be controlled by controlling the strength of the applied magnetic field. In modelling the thermal boundary layer flow with variable viscosity and variable thermal conductivity, the Prandtl number must be treated as a variable irrespective of flow conditions whether there is slip or no-slip at the boundary to obtain realistic results.  相似文献   

17.
In this paper, the basic formulae for the semi-analytical graded FEM on FGM members are derived. Since FGM parameters vary along three space coordinates, the parameters can be integrated in mechanical equations. Therefore with the parameters of a given FGM plate, problems of FGM plate under various conditions can be solved. The approach uses 1D discretization to obtain 3D solutions, which is proven to be an effective numerical method for the mechanical analyses of FGM structures. Examples of FGM plates with complex shapes and various holes are presented.  相似文献   

18.
针对陶瓷-金属功能梯度圆板,同时考虑几何非线性、材料物性参数随温度变化且材料组分沿厚度方向按幂律分布的情况,应用虚功原理给出了热载荷与横向简谐载荷共同作用下的非线性振动偏微分方程。在固支无滑动的边界条件下,通过引入位移函数,利用伽辽金方法得到了达芬型非线性动力学方程。利用Melnikov方法,给出了热环境中功能梯度圆板可能发生混沌运动的临界条件。通过数值算例,给出了不同体积分数指数和温度的同宿分岔曲线,平面相图和庞加莱映射图,讨论其对临界条件的影响,证实了系统混沌运动的存在。通过分岔图和与其相对应的最大李雅普诺夫指数图,分析了激励频率和激励幅值对倍周期分岔的影响及变化规律,发现系统可出现周期、倍周期和混沌等复杂动力学响应。  相似文献   

19.
The effects of mechanical boundary conditions, often encountered in thermalstructural engineering, on the thermal shock resistance (TSR) of ultra-high temperature ceramics (UHTCs) are studied by investigating the TSR of a UHTC plate with various types of constraints under the first, second, and third type of thermal boundary conditions. The TSR of UHTCs is strongly dependent on the heat transfer modes and severity of the thermal environments. Constraining the displacement of the lower surface in the thickness direction can significantly decrease the TSR of the UHTC plate, which is subject to the thermal shock at the upper surface. In contrast, the TSR of the UHTC plate with simply supported edges or clamped edges around the lower surface is much better.  相似文献   

20.
热/机械载荷下功能梯度材料矩形厚板的弯曲行为   总被引:5,自引:2,他引:5  
采用Reddy高阶剪切板理论,考虑材料物性参数随坐标和温度变化的特性,研究在均匀变化的温度场内功能梯度材料矩形板在面内与横向载荷共同作用下的横向弯曲问题,基于一维DQ法和Galerkin技术,给出了一对边固支,另对边任意约束时板弯曲问题的半解析解,以Si3N4/SUS304板为例考察了材料组份,温度场,面内载荷及边界约束条件等对功能梯度材料板弯曲行为的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号