首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Structural materials for commercial reactor are usually used under conditions of stress. However, the evaluation of the microstructural evolution and the changes in the mechanical property induced by the neutron irradiation in structural materials does not typically consider the effect of stress since it is difficult to carry out neutron irradiation testing under conditions of stress. In this study, a model alloy (Fe–0.6Cu) of reactor pressure vessels was irradiated by neutrons at 573?K with a dose of about 3.2?×?1021?neutrons/m2 (E?>?0.1?MeV), corresponding to 5.2?×?10?4?dpa (displacement per atom), with and without tension stress. The tension stress caused elastic deformation in the specimens. The size of microvoids in the irradiated sample with tension stress was larger than that in the sample without tension stress. However, the effects of stress on the formation of Cu precipitates and the changes in the mechanical property were not clear.  相似文献   

2.
The effect of formation of a nanocrystalline structure in the near-surface layer of platimun (99.99%) as a result of 30-keV Ar ion bombardment up to fluences of 1016–1017 cm?2 was discovered by the direct method of field ion microscopy. The spatial distribution and structure of radiation damage in Pt was established in the case where Pt is bombarded by fast neutrons (E > 0.1 MeV) up to fluences of 6.7 × 1017 and 3.5 × 1018 cm?2 in the RWW-2M reactor at a temperature of ~310 K.  相似文献   

3.
The nanostructure (nanoparticle distribution) of ferritic-martensitic 12%-chromium steels EK-181 (Fe-12Cr-2W-V-Ta-B) and ChS-139 (Fe-12Cr-2W-V-Ta-B-Nb-Mo) subjected to different modes of mechanical and heat treatments and neutron irradiation has been investigated using small-angle neutron scattering. The samples have been studied in the initial state and after neutron irradiation (IVV-2M reactor) at a temperature of 80°C with fluences of 1018, 1019, and 5 × 1019 cm?2 (E ≥ 0.1 MeV). The nanostructure of the steels is characterized by precipitations of nanoparticles with two characteristic sizes of 1.0–1.5 and 7–8 nm. The dependence of the nanostructure parameters on the composition of the steels and on the conditions of heat treatment and irradiation has been discussed.  相似文献   

4.
The supra-atomic structure of single crystals of synthetic quartz with a dislocation density of 54 cm?2 in their initial state and after irradiation in a VVR-M reactor by fast neutrons with the energy, E n > 0.1 MeV, at fluences of 2.3 × 1019 and 4.5 × 1019 N/cm2, has been studied by the method of small-angle thermal neutron scattering. It has been established that fast neutrons create point, linear, and bulk defects throughout the entire material. It has been shown that extended defects have a significant integral length per volume unit equal to ??3 × 1011 cm/cm3, and can form a consolidated network in the sample with a cell size of ??30 nm, through the channels of which the migration of impurity atoms and molecules is possible.  相似文献   

5.
The superatomic structure of synthetic quartz single crystals with dislocation densities ρ = 54 and 570 cm?2 was studied in the initial state and after irradiation with fast neutrons with energies E n > 0.1 MeV in a WWRM reactor (St. Petersburg Nuclear Physics Institute) in the fluence range F = 0.2 × 1017?5.0 × 1018 neutrons/cm2. Weak irradiation with F = 0.2 × 1017 neutrons/cm2 causes only slight structural changes, whereas appreciable generation of defects with radii of gyration r g ~ 1–2 nm and R G ~ 40–50 nm occurs at F = 7.7 × 1017?5.0 × 1018 neutrons/cm2. As the fluence increases further, the number and volume fraction of point defects, as well as extended (channels ~2 nm in radius) and globular (amorphous phase nuclei) defects, increase.  相似文献   

6.
The photoluminescence spectra of CdS single crystals irradiated by electrons (E = 1.2 MeV, Φ = 2×1017 cm?2) are investigated in the visible and near-infrared regions of electromagnetic radiation. Some samples of the CdS single crystals are preliminarily irradiated by neutrons (E = 2 MeV, Φ = 2 × 1018 cm?2) with the aim of increasing the concentration of initial structural defects. From analyzing the peak intensities of photoluminescence in the irradiated single crystals at the wavelengths λm = 0.720, 1.030, and 0.605 μm, it is concluded that the CdS samples with a low concentration of structural defects in the initial state possess the highest resistance to electron radiation. It is assumed that the observed transformation of the photoluminescence spectra of the imperfect CdS single crystals subjected to electron irradiation is determined by either the mechanisms of subthreshold defect formation or the transformation of the defect complexes in elastic and electric fields near the large structural damages of the crystal lattice.  相似文献   

7.
The present work is devoted to investigation of optical absorption in pure and neodymium-doped YAlO3 (YAP) single crystals in the spectral range 0.2–1.1 μm induced by the influence of 12C ions irradiation with energy 4.50 MeV/u (MeV per nucleon) and a fluence 2 × 109 cm?2 or of 235U ion irradiation with energy 9.35 MeV/u and a fluence 5 × 1011 cm?2. The induced absorption in the case of 12C ions irradiation is caused by recharging of point growth defects and impurities under the radiation influence. After irradiation by 235U ions with fluence 5 × 1011 cm?2 the strong absorption rise is probably caused by contribution of the lattice destruction as a result of heavy ion bombardment.  相似文献   

8.
316 stainless steel has been irradiated with 5 MeV Cu ions to a fluence of 2 × 1016 ions/cm2 at 500°C. Transmission electron microscopy of this sample reveals that 6 × 1015 voids/cm2 of average diameter equal to 180 Å were produced. A method for correlating the fluence of ions with equivalent neutron fluences is described. This method predicts that the Cu bombardment in this study should produce a microstructure similar to that found in steel irradiated with 2–5 × 1122 neutrons/cm2. A comparison of the ion produced voids with those found after previous neutron irradiation experiments confirms this prediction.  相似文献   

9.
Annealed Zircaloy-2 was exposed to fast neutron fluences in the range 0.46 to 6.71 × 1019 nvt, E > 1 MeV, at temperatures of up to 450°C. The level of radiation hardening, as measured by the change in yield stress after irradiation, increased with irradiation temperature at least up to 380°C.

Post-irradiation annealing treatments showed that radiation anneal hardening occurred after irradiation at temperatures up to 325°C. After irradiation at 375°C, annealing treatments did not produce a further increase in the yield stress above that produced by the irradiation, however the radiation hardening persisted to 450°C. The uniform strain tended to decrease as the amount of radiation anneal hardening increased and as the fast neutron fluence increased above ~5 × 1018 nvt, E > 1 MeV.

The effects of irradiation temperature and post-irradiation annealing on the yield stress and on uniform strain are explained in terms of the strengthening of radiation damage defect clusters and their increased effectiveness to impede dislocation movement.  相似文献   

10.
The self-standing films of polymethyl methacrylate (PMMA) were irradiated under vacuum with 50?MeV lithium (Li3+) and 80?MeV carbon (C5+) ions to the fluences of 3?×?1014, 1?×?1015, 1?×?1016 and 1?×?1017 ions µm?2. The pristine and irradiated samples of PMMA films were studied by using ultraviolet–visible (UV–Vis) spectrophotometry, Fourier transform infrared, X-ray diffractrometer and atomic force microscopy. With increasing ion fluence of swift heavy ion (SHI), PMMA suffers degradation, UV–Vis spectra show a shift in the absorption band from the UV towards visible, attributing the formation of the modified system of bonds. Eg and Ea decrease with increasing ion fluence. The size of crystallite and crystallinity percentage decreases with increasing ion fluence. With SHI irradiation, the intensity of IR bands and characteristic bands of different functional groups are found to shift drastically. The change in (Eg) and (N) in carbon cluster is calculated. Shifting of the absorption band from the UV towards visible along with optical activity and as a result of irradiation, some defects are created in the polymer causing the formation of conjugated bonds and carbon clusters in the polymer, which in turn lead to the modification in optical properties that could be useful in the fabrication of optoelectronic devices, gas sensing, electromagnetic shielding and drug delivery.  相似文献   

11.
Feroz A. Mir 《哲学杂志》2013,93(3):331-344
PrFe0.7Ni0.3O3 thin films (thickness ~ 200 nm) were prepared by pulsed laser ablation technique on LaAlO3 substrate. These films were irradiated with 200?MeV Ag15+ ions at various fluencies, ranging from 1 × 1011 to 1 × 1012 ions/cm2. These irradiated thin films were characterized by using X-ray diffraction, dc conductivity, dc magnetization and atomic force microscopy. These films exhibit orthorhombic structure and retain it even after irradiations. The crystallite size (110–137?nm), micro strain (1.48 × 10?2–1.75 × 10?2 line?2?m?4) and dislocation density (79.7 × 1014–53.2 × 1014 line/m2) vary with ion fluencies. An enhancement in resistivity at certain fluence and then a decrease in its value (0.22175–0.21813?Ω?cm) are seen. A drastic change in observed magnetism after ion irradiation is seen. With ion irradiation, an increase in surface roughness, due to the formation of hillocks and other factors, is observed. Destruction of magnetic domains after irradiation can also be visualized with magnetic force microscopy and is in close agreement with magnetization data. The impact on various physical properties in these thin films after irradiation indicates a distortion in the lattice structure and consequently on single-particle band width caused by stress-induced defects.  相似文献   

12.
The cross section for the reaction 12C(12C, n)23Mg has been measured in the energy range Ec.m. = 3.54?4.94 MeV by counting the delayed γ-rays from 23Mg decays (half-life = 11.57 sec), and a theoretical model has been employed to extrapolate the results to threshold (Ec.m = 2.60 MeV). By combining these results with previous measurements of the reactions 12C(12C, p)23Na and 12C(12C, α)20Ne, the neutron branching ratio in the energy interval from threshold to 8 MeV is deduced, and a thermal average is computed that should be valid for use in astrophysical environments characterized by temperatures in the range (0.5–5) × 109 °K. The neutron branching at temperatures appropriate to hydrostatic carbon burning in stars (T ≈ 109 °K) is found to be much smaller than previously estimated.  相似文献   

13.
Tin dioxide nanoparticles and zinc oxide nanorods were synthesized chemically and thick film gas sensors on alumina substrates were fabricated of these materials. Morphology and crystallite size of synthesized powders were investigated by TEM. The fabricated sensors were irradiated with 100 MeV O7+ ions at fluences of 1×1011, 1×1012 and 1×1013 ions/cm2. The X-ray diffraction analysis of the samples before and after ion bombardment was performed for structural characterization. The sensing response to ethanol before and after irradiation was carried out for each fabricated sensor. Investigation revealed that irradiated SnO2 based sensor’s response and response time increased significantly. Results show that ZnO based sensor exhibit strong resistance to damage caused by ion irradiation which might be due to defects annihilation.  相似文献   

14.
A combined analysis of the available data on the primaryγ-ray intensities from the113Cd(n, γ) reaction atE n=1.9 and 24.3 keV neutron energies together with the data on113Cd neutron capture cross sections in theE n=3–200 keV energy region was carried out. The neutron strength functions were determined asS n0=(0.260±0.073) 10?4 and Sn1=(5.06±0.67) 10?4. No spin-orbit splitting of thep-wave neutron strength function was found. The energy dependence of theE 1 radiative strength function {ie147-01} was fitted by the Kadmenski-Furman model somewhat better than by a standard Lorentzian. TheM 1 giant resonance parameters were obtained as E G M 1 =8.8±1.6 MeV and Γ G M 1 = 4.7±2.6 MeV. The neutron capture cross section of113Cd from its isomeric state ({ie147-02}=11/2?, E 1 m =263.7 keV) was calculated.  相似文献   

15.
Defects in a ferromagnetic crystal of manganite La0.85Sr0.15MnO3 were created by irradiation with fast neutrons (E > 0.1 MeV). Fast neutrons produce defect clusters in a crystal lattice. The volume fraction of the clusters in the crystal after irradiation to a dose F = 2 × 1019 cm?2 (T irr = 340 K) was ?40%. The structural and magnetic states of the modified manganite were studied using thermal-neutron diffraction and magnetic measurements. It was revealed that neutron irradiation of a crystal suppresses the cooperative Jahn-Teller effect and the initial charge modes and decreases the temperature of ferromagnetic ordering. Under irradiation with fast neutrons, the crystalline structure of the manganite changes from the orthorhombic O′ to the pseudocubic O* phase. Arguments are advanced in favor of the specific features of the irradiated-manganite structural state being determined by long-wavelength strains induced in the crystal by antisite defects.  相似文献   

16.
Abstract

The present study contributes some new aspects to the general understanding of the ion implantation behaviour of 3 common semiconductor materials, and of diffusion processes in these materials. Single crystals of Si, Ge, and GaAs were bombarded with Kr- or Xe-ions at energies of 40 or 500 keV and doses between 1011 and 2 × 1016 ions/cm2. Gas release measurements and Rutherford scattering of 1 MeV He+-ions combined with channeling were used to study bombardment damage (amorphization) and inert gas diffusion. At low bombardment doses (1011 ions/cm2) and energy (40 keV), no damage was observed and the gas release was compatible with volume diffusion resembling Group I and VIII behaviour. Hence, the pre-exponential terms, D 0, were low (range 10-5±1 cm2 sec?1) and the activation enthalpies, Δ H, were much lower than those of self-diffusion or of diffusion of Group III and V elements. The Δ H's for gas diffusion followed the relation Δ H = (1.05±0.1) × 10?3 Tm eV with the melting point, Tm , in °K. The mechanism of gas mobility might be the Turnbull dissociative mechanism. Rutherford scattering and channeling data indicated that part of the gas occupied lattice sites.

At higher doses, the bombarded layers turned amorphous. Channeling experiments showed a coincidence in temperatures for a gas release process different from the above one of volume diffusion, and recrystallization of the disordered layer to the single crystalline state. Both processes occurred in the temperature range 0.60 to 0.65 Tm . The gas release indicated a (partial) single jump character with implied Δ H's following the relation Δ H = (2.1±0.1) × 10?3 Tm eV. Contrary to previous results on oxides, this new gas release occurred at temperatures near to those or even above those of volume diffusion of the gas.

Due to the easy formation of an amorphous layer it was difficult to observe the retarded release (trapping of gas) that has been found in many materials at high gas and damage concentrations. However, in a separate series of experiments with 500 keV Kr-ions, a release retarded with respect to volume diffusion of the gas was observed in Si and Ge.  相似文献   

17.
The paper describes a novel transmission electron microscopy (TEM) experiment with in situ ion irradiation designed to improve and validate a computer model. TEM thin foils of molybdenum were irradiated in situ by 1?MeV Kr ions up to ~0.045 displacements per atom (dpa) at 80°C at three dose rates ?5?×?10?6, 5?×?10?5, and 5?×?10?4?dpa/s – at the Argonne IVEM-Tandem Facility. The low-dose experiments produced visible defect structure in dislocation loops, allowing accurate, quantitative measurements of defect number density and size distribution. Weak beam dark-field plane-view images were used to obtain defect density and size distribution as functions of foil thickness, dose, and dose rate. Diffraction contrast electron tomography was performed to image defect clusters through the foil thickness and measure their depth distribution. A spatially dependent cluster dynamic model was developed explicitly to model the damage by 1?MeV Kr ion irradiation in an Mo thin foil with temporal and spatial dependence of defect distribution. The set of quantitative data of visible defects was used to improve and validate the computer model. It was shown that the thin foil thickness is an important variable in determining the defect distribution. This additional spatial dimension allowed direct comparison between the model and experiments of defect structures. The defect loss to the surfaces in an irradiated thin foil was modeled successfully. TEM with in situ ion irradiation of Mo thin foils was also explicitly designed to compare with neutron irradiation data of the identical material that will be used to validate the model developed for thin foils.  相似文献   

18.
It is shown that ZnO nanorods grown by MOCVD exhibit enhanced radiation hardness against high energy heavy ion irradiation as compared to bulk layers. The decrease of the luminescence intensity induced by 130 MeV Xe+23 irradiation at a dose of 1.5 × 1014 cm–2 in ZnO nanorods is nearly identical to that induced by a dose of 6 × 1012 cm–2 in bulk layers. The change in the nature of electronic transitions responsible for luminescence occurs at an irradiation dose around 1 × 1014 cm–2 and 5 × 1012 cm–2 in nanorods and bulk layers, respectively. High energy heavy ion irradiation followed by thermal annealing is also effective on the quality of ZnO nanorods grown by electrodeposition. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Epitaxial AlGaN/GaN layers grown by molecular beam epitaxy (MBE) on SiC substrates were irradiated with 150 MeV Ag ions at a fluence of 5×1012 ions/cm2. The samples used in this study are 50 nm Al0.2Ga0.8N/1 nm AlN/1 μ m GaN/0.1 μ m AlN grown on SI 4H-SiC. Rutherford backscattering spectrometry/channeling strain measurements were carried out on off-normal axis of irradiated and unirradiated samples. In an as-grown sample, AlGaN layer is partially relaxed with a small tensile strain. After irradiation, this strain increases by 0.22% in AlGaN layer. Incident ion energy dependence of dechanneling parameter shows E 1/2 dependence, which corresponds to the dislocations. Defect densities were calculated from the E 1/2 graph. As a result of irradiation, the defect density increased on both GaN and AlGaN layers. The effect of irradiation induced-damages are analyzed as a function of material properties. Observed results from different characterization techniques such as RBS/channeling, high-resolution XRD and AFM are compared and complemented with each other to deduce the information. Possible mechanisms responsible for the observations have been discussed in detail.  相似文献   

20.
K.Y. Yu  C. Sun  Y. Chen  Y. Liu  H. Wang  M.A. Kirk 《哲学杂志》2013,93(26):3547-3562
Monolithic Ag and Ni films and Ag/Ni multilayers with individual layer thickness of 5 and 50?nm were subjected to in situ Kr ion irradiation at room temperature to 1 displacement-per-atom (a fluence of 2?×?1014?ions/cm2). Monolithic Ag has high density of small loops (4?nm in diameter), whereas Ni has fewer but much greater loops (exceeding 20?nm). In comparison, dislocation loops, ~4?nm in diameter, were the major defects in the irradiated Ag/Ni 50?nm film, while the loops were barely observed in the Ag/Ni 5?nm film. At 0.2?dpa (0.4?×?1014?ions/cm), defect density in both monolithic Ag and Ni saturated at 1.6 and 0.2?×?1023/m3, compared with 0.8?×?1023/m3 in Ag/Ni 50?nm multilayer at a saturation fluence of ~1?dpa (2?×?1014?ions/cm2). Direct observations of frequent loop absorption by layer interfaces suggest that these interfaces are efficient defect sinks. Ag/Ni 5?nm multilayer showed a superior morphological stability against radiation compared to Ag/Ni 50?nm film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号