首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We analyze some solvable models of a quantum mechanical system in interaction with a reservoir when the initial state is not factorized. We apply Nakajima-Zwanzig’s projection method by choosing a reference state of the reservoir endowed with the mixing property. In van Hove’s limit, the dynamics is described in terms of a master equation. We observe that Markovianity becomes a valid approximation for timescales that depend both on the form factors of the interaction and on the observables of the reservoir that can be measured.  相似文献   

2.
We investigate the time evolution process of one selected (initially prepared by optical pumping) vibrational molecular state S, coupled to all other intra-molecular vibrational states R of the same molecule, and also to its environment Q. Molecular states forming the first reservoir R are characterized by a discrete dense spectrum, whereas the environment reservoir Q states form a continuous spectrum. Assuming the equidistant reservoir R states we find the exact analytical solution of the quantum dynamic equations. S-Q and R-Q couplings yield to spontaneous decay of the S and R states, whereas S-R exchange leads to recurrence cycles and Loschmidt echo at frequencies of S-R transitions and double resonances at the interlevel reservoir R transitions. Due to these couplings the system S time evolution is not reduced to a simple exponential relaxation. We predict various regimes of the system S dynamics, ranging from exponential decay to irregular damped oscillations. Namely, we show that there are possible four dynamic regimes of the evolution: (i) independent of the environment Q exponential decay suppressing backward R - S transitions, (ii) Loschmidt echo regime, (iii) incoherent dynamics with multicomponent Loschmidt echo, when the system state is exchanged its energy with many states of the reservoir, (iv) cycle mixing regime, when long time system dynamics looks as a random-like. We suggest applications of our results for interpretation of femtosecond vibration spectra of large molecules and nano-systems.  相似文献   

3.
4.
The ARPES of high-Tc cuprates and theoretical results of low-Fermi energy band structure fluctuation for different groups of superconductors indicate that electron coupling to pertinent phonon modes drive system from adiabatic into anti-adiabatic state (ω>EF). At these circumstances, not only Migdal-Eliashberg approximation is not valid, but basic adiabatic Born-Oppenheimer approximation (BOA) does not hold. At these circumstances, electronic structure has to be studied as explicitly dependent on instantaneous nuclear coordinates Q as well as on instantaneous nuclear momenta P.In the present paper—part I, it has been shown that Q, P-dependent modification of the BOA for ground electronic state can be derived by sequence of canonical transformations of the basis functions. The effect of nuclear coordinates and momenta on electronic structure is presented in the form of corrections to zero-, one- and two-particle terms of clamped nuclear Hamiltonian. In the anti-adiabatic state, correction to electronic ground state energy (zero-particle term correction) is negative and system can be stabilized in the anti-adiabatic state at distorted geometry with respect to adiabatic equilibrium structure and gap in one-particle spectrum of quasi-continuum states at Fermi level can be opened. Stabilization effect is solely the consequence of nuclear dynamics (P) that is crucial in anti-adiabatic state. It has been shown that nuclear dynamics also increases electron correlation until system at nuclear motion remains in a bound state. Corresponding corrections to electronic wave function are also specified.On the other hand, when system remains at vibration motion of nuclei in adiabatic state, the influence of nuclear dynamics (P-dependence) is negligible. In this case, all basic effects are covered through nuclear coordinates (Q-dependence) within the adiabatic BOA and standard results of solid-state (or molecular) physics are recovered.  相似文献   

5.
Stig Stenholm 《Annals of Physics》2008,323(11):2892-2904
We investigate the case of a dynamical system when irreversible time evolution is generated by a nonHermitian superoperator on the states of the system. We introduce a generalized scalar product which can be used to construct a monotonically changing functional of the state, a generalized entropy. This will depend on the level of system dynamics described by the evolution equation. In this paper we consider the special case when the irreversibility derives from imbedding the system of interest into a thermal reservoir. The ensuing time evolution is shown to be compatible both with equilibrium thermodynamics and the entropy production near the final steady state. In particular, Prigogine’s principle of minimum entropy production is discussed. Also the limit of zero temperature is considered. We present comments on earlier treatments.  相似文献   

6.
7.
A spectator system in an atoms-cavity QED model is investigated. The subsystem initial state is prepared as one of the Bell states or one mixed state. It is shown that (i) the dynamics of Bell states are independent on the initial states; (ii) the concurrence dynamics can be engineered by a controlling light field.  相似文献   

8.
We show that it is possible to generate Einstein-Podolsky-Rosen (EPR) entangled radiation using an atomic reservoir controlled by coherent population trapping. A beam of three-level atoms is initially prepared in nearcoherent population trapping (CPT) state and acts as a long-lived coherence-controlled reservoir. Four-wave mixing leads to amplification of cavity modes resonant with RabJ sidebands of the atomic dipole transitions. The cavity modes evolve Jnto an EPR state, whose degree of entanglement is controlled by the intensities and the frequencies of the driving fields. This scheme uses the long-lived CPT coherence and is robust against spontaneous emission of the atomic beam. At the same time, this scheme is implemented in a one-step procedure, not in a two-step procedure as was required in Phys. Rev. Lett. 98 (2007) 240401.  相似文献   

9.
Molecular motors are considered that convert the chemical energy released from the hydrolysis of adenosine triphosphate (ATP) into mechanical work. Such a motor represents a small system that is coupled to a heat reservoir, a work reservoir, and particle reservoirs for ATP, adenosine diphosphate (ADP), and inorganic phosphate (P). The discrete state space of the motor is defined in terms of the chemical composition of its catalytic domains. Each motor state represents an ensemble of molecular conformations that are thermally equilibrated. The motor states together with the possible transitions between neighboring states define a network representation of the motor. The motor dynamics is described by a continuous-time Markov process (or master equation) on this network. The consistency between thermodynamics and network dynamics implies (i) local and nonlocal balance conditions for the transition rates of the motor and (ii) an underlying landscape of internal energies for the motor states. The local balance conditions can be interpreted in terms of constrained equilibria between neighboring motor states; the nonlocal balance conditions pinpoint chemical and/or mechanical nonequilibrium.  相似文献   

10.
11.
By means of composite quantum collision models, we study the entanglement dynamics of a bipartite system, i.e.,two qubits S1 and S2 interacting directly with an intermediate auxiliary qubit SA, while SAis in turn coupled to a thermal reservoir. We are concerned with how the intracollisions of the reservoir qubits influence the entanglement dynamics. We show that even if the system is initially in the separated state, their entanglement can be generated due to the interaction between the qubits. In the long-time limit, the steady-state entanglement can be generated depending on the initial state of S1 and S2 and the environment temperature. We also study the dynamics of tripartite entanglement of the three qubits S1,S2, and SAwhen they are initially prepared in the GHZ state and separated state, respectively. For the GHZ initial state,the tripartite entanglement can be maintained for a long time when the collision strength between the environment qubits is sufficiently large.  相似文献   

12.
王小云  丁邦福  赵鹤平 《中国物理 B》2013,22(2):20309-020309
Time evolution dynamics of three non-coupled two-level atoms independently interacting with their reservoirs is solved exactly by considering a damping Lorentzian spectral density.For three atoms initially prepared in Greenberger-Horne-Zeilinger-type state,quantum correlation dynamics in a Markovian reservoir is compared with that in a nonMarkovian reservoir.By increasing detuning quantity in the non-Markovian reservoir,three-atom correlation dynamics measured by negative eigenvalue presents a trapping phenomenon which provides long-time quantum entanglement.Then we compare the correlation dynamics of three atoms with that of two atoms,measured by quantum entanglement and quantum discord for an initial robuster-entangled type state.The result further confirms that quantum discord is indeed different from quantum entanglement in identifying quantum correlation of many bodies.  相似文献   

13.
The dynamics behaviors of genuine multipartite Einstein–Podolsky–Rosen steering (GMS) and genuine multipartite nonlocality (GMN) are investigated herein, and how the lost GMS and GMN under a mixed decoherence system can be recovered is explored. Explicitly, the decoherence system can be modeled by that a tripartite Werner‐type state suffers from the non‐Markovian regimes and one subsystem of the tripartite is under a non‐inertial frame. The conditions for steerable and nonlocal states can be obtained with respect to the tripartite Werner‐type state established initially. GMS and GMN are very fragile and vulnerable under the influence of the collective decoherence. GMS and GMN will vanish with growing intensity of the Unruh effect and the non‐Markovian reservoir. Besides, all achievable GMN's states are steerable, while not every steerable state (GMS's state) can achieve nonlocality. This means that the steering–nonlocality hierarchy is still tenable and GMN's states are a strict subset of the GMS's states in such a scenario. Subsequently, an available methodology to recover the damaged GMS and GMN is proposed. It turns out that the lost GMS and GMN can be effectively restored, and the ability of GMS and GMN to suppress the collective decoherence can be enhanced.  相似文献   

14.
We consider the discrete time dynamics of an ensemble of fermionic quantum walkers moving on a finite discrete sample, interacting with a reservoir of infinitely many quantum particles on the one dimensional lattice. The reservoir is given by a fermionic quasifree state, with free discrete dynamics given by the shift, whereas the free dynamics of the non-interacting quantum walkers in the sample is defined by means of a unitary matrix. The reservoir and the sample exchange particles at specific sites by a unitary coupling and we study the discrete dynamics of the coupled system defined by the iteration of the free discrete dynamics acting on the unitary coupling, in a variety of situations. In particular, in absence of correlation within the particles of the reservoir and under natural assumptions on the sample’s dynamics, we prove that the one- and two-body reduced density matrices of the sample admit large times limits characterized by the state of the reservoir which are independent of the free dynamics of the quantum walkers and of the coupling strength. Moreover, the corresponding asymptotic density profile in the sample is flat and the correlations of number operators have no structure, a manifestation of thermalization.  相似文献   

15.
In many previous temperature estimation schemes,the temperature of a sample is directly read out from the final steady state of a quantum probe,which i5 eoupled to the sample.However,in these studies,information of eorrelations between system(the probe) and reservoir(the sample) is usually eliminated,leading the steady state of the probe is a canonical equilibrium state with respect solely to system's Hamiltonian.To explore the influence of system-reservoir correlations on the estimation precision,we investigate the equilibration dynamics of a spin interacting with a finite temperature bosonic reservoir.By incorporating an intermediate harmonic oscillator or a collective coordinate into the spin,the system-reservoir correlations can be correspondingly encoded in a Gibbs state of an effective Hamilton,which is size consistent with the original bare spin.Extracting information of temperature from this corrected steady state,we find the effect of the systemreservoir correlations on the estimation precision is highly sensitive to the details of the spectral density function of the measured reservoir.  相似文献   

16.
Quantum correlation of a general bipartite quantum state may contain not only entanglement but also the ingredient that cannot be accounted for by entanglement. In this paper, we study the dynamics of quantum correlation by virtue of quantum discord, in particular the transfer of quantum correlation in the absence of entanglement. The considered model consists of two correlated qubits with each one being coupled to an independent reservoir. We show that the reservoirs which are initially in product state can be induced quantum correlation even when the qubits are initially in separate state.  相似文献   

17.
在压缩真空库中,研究了原子与场的相互作用下二比特体系的量子discord和量子纠缠的动力学行为.重点分析了原子的初始态系数和压缩真空库的压缩系数对量子纠缠和量子discord的影响.通过数值分析我们得到,随着原子的初始态系数和压缩真空库的压缩系数值的增加,量子纠缠和量子discord都会减小,但量子纠缠比量子discord减小的更快一些.最后研究了在原子的初始态系数和压缩真空库的压缩系数的值相同的情况下,量子discord比量子纠缠存在的时间更长些.  相似文献   

18.
Ernest Fontich 《Physica A》2009,388(9):1867-1878
We present a simple mean field model to analyze the dynamics of competition between two populations of replicators in terms of the degree of intraspecific cooperation (i.e., autocatalysis) in one of these populations. The first population can only replicate with Malthusian kinetics while the second one can reproduce with Malthusian or autocatalytic replication or with a combination of both reproducing strategies. The model consists of two coupled, nonlinear, autonomous ordinary differential equations. We investigate analytically and numerically the phase plane dynamics and the bifurcation scenarios of this ecologically coupled system, focusing on the outcome of competition for several degrees of intraspecific cooperation, σ, in the second population of replicators. We demonstrate that the dynamics of both populations can not be governed by a limit cycle, and also that once cooperation is considered, the topology of phase space does not allow for coexistence. Even for low values of the degree of intraspecific cooperation, for large enough autocatalytic replication rates, the second population of replicators is able to outcompete the first one, having a wide basin of attraction in state space. We characterize the same power law dependence between the outcompetition extinction times, τ, and the degree of intraspecific cooperation for both populations, given by τciσ−1. Our results suggest that, under some kinetic conditions, the appearance of autocatalysis might be favorable in a population of replicators growing with Malthusian kinetics competing with another population also reproducing exponentially.  相似文献   

19.
Entanglement dynamics of the N-qubit XY model in thermal and dephasing environments are investigated by solving the Lindblad form of the master equation. Analytical solutions for the two-qubit case and numerical solutions for the multi-qubit case are obtained. For the two-qubit case, our results revealed two main features for entanglement evolution from different initial states. First, the thermal reservoir always induces degradation of the entanglement, and the entanglement may undergo sudden death during certain intervals of the evolution time. Second, the dephasing environment induces damped oscillation of the entanglement for initially separable states and mixed states with relative large values of Δ or J; however, it always induces exponentially decay of the entanglement for the initial Bell states. For the multi-qubit case, our results show that the entanglement decreases monotonically as the time evolves for the initial W state, and behaves as damped oscillation for the initial “one-particle” state. Particularly, for system with large number of qubits, the curves of the concurrence C12 with different N are almost overlapped in dephasing environment.  相似文献   

20.
The fluorescence emission spectrum of single peripheral light-harvesting (LH2) complexes of the photosynthetic purple bacterium Rhodopseudomonas acidophila exhibits remarkable dynamics on a time scale of several minutes. Often the spectral properties are quasi-stable; sometimes large spectral jumps to the blue or to the red are observed. To explain the dynamics, every pigment is proposed to be in two conformational substates with different excitation energies, which originate from the conformational state of the protein as a result of pigment-protein interaction. Due to the excitonic coupling in the ring of 18 pigments, the two-state assumption generates a substantial amount of distinct spectroscopic states, which reflect part of the inhomogeneous distributed spectral properties of LH2. To describe the observed dynamics, spontaneous and light-induced transitions are introduced between the two states. For each ‘realization of the disorder’, the spectral properties are calculated using a disordered exciton model combined with the modified Redfield theory to obtain realistic spectral line shapes. The single-molecule fluorescence peak (FLP) distribution, the distribution dependence on the excitation intensity, and the FLP time traces are well described within the framework of this model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号