首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organolithium compounds RLi (R = CH(3), CH(3)CH(2), CH(2)=CH, and HC(triple bond)C) and their corresponding hydrocarbons were fully optimized at the MP2/6-311+G(2df,2pd) level. Single-point energy calculations also were carried out at the CCSD(T) and B3LYP levels with the same triple split-valence basis set. Acidities, electron affinities, and bond dissociation energies are reported, and the following general results were found: (1) Alpha-lithio anions are ground-state triplet molecules. (2) Lithium is an acid-enhancing substituent. (3) Conjugate bases of organolithiums are stable with respect to electron loss and therefore are attractive targets for mass spectrometry investigations. (4) Lithium weakens alpha- and beta-C-H bonds, the latter by approximately 25 kcal mol(-1). Consequently, radical chemistry of lithiated compounds at remote sites is a promising area for exploration.  相似文献   

2.
The molecular structures of neutral Si n Li ( n = 2-8) species and their anions have been studied by means of the higher level of the Gaussian-3 (G3) techniques. The lowest energy structures of these clusters have been reported. The ground-state structures of neutral clusters are "attaching structures", in which the Li atom is bound to Si n clusters. The ground-state geometries of anions, however, are "substitutional structures", which is derived from Si n+1 by replacing a Si atom with a Li (-). The electron affinities of Si n Li and Si n have been presented. The theoretical electron affinities of Si n are in good agreement with the experiment data. The reliable electron affinities of Si n Li are predicted to be 1.87 eV for Si 2Li, 2.06 eV for Si 3Li, 2.01 eV for Si 4Li, 2.61 eV for Si 5Li, 2.36 eV for Si 6Li, 2.21 eV for Si 7Li, and 3.18 eV for Si 8Li. The dissociation energies of Li atom from the lowest energy structures of Si n Li and Si atom from Si n clusters have also been estimated respectively to examine relative stabilities.  相似文献   

3.
Two stable products of reactions of water molecules with the Al3O3- cluster, Al3O4H2- and Al3O5H4-, are studied with electronic structure calculations. There are several minima with similar energies for both anions and the corresponding molecules. Dissociative absorption of a water molecule to produce an anionic cluster with hydroxide ions is thermodynamically favored over the formation of Al3O3-(H2O)n complexes. Vertical electron detachment energies of Al3O4H2- and Al3O5H4- calculated with ab initio electron propagator methods provide a quantitative interpretation of recent anion photoelectron spectra. Contrasts and similarities in these spectra may be explained in terms of the Dyson orbitals associated with each transition energy.  相似文献   

4.
The structures, energetics, and vibrational frequencies of nine hydrogenated 9H-keto-guanine radicals (G+H)(*) and closed-shell anions (G+H)(-) are predicted using the carefully calibrated (Chem. Rev. 2002, 102, 231) B3LYP density functional method in conjunction with a DZP++ basis set. These radical and anionic species come from consecutive electron attachment to the corresponding protonated (G+H)(+) cations in low pH environments. The (G+H)(+) cations are studied using the same level of theory. The proton affinity (PA) of guanine computed in this research (228.1 kcal/mol) is within 0.7 kcal/mol of the latest experiment value. The radicals range over 41 kcal/mol in relative energy, with radical r1, in which H is attached at the C8 site of guanine, having the lowest energy. The lowest energy anion is a2, derived by hydride ion attachment at the C2 site of guanine. No stable N2-site hydride should exist in the gas phase. Structure a9 was predicted to be dissociative in this research. The theoretical adiabatic electron affinities (AEA), vertical electron affinities, and vertical detachment energies were computed, with AEAs ranging from 0.07 to 3.12 eV for the nine radicals.  相似文献   

5.
The GeH(n) (n = 0-4) and Ge(2)H(n) (n = 0-6) systems have been studied systematically by five different density functional methods. The basis sets employed are of double-zeta plus polarization quality with additional s- and p-type diffuse functions, labeled DZP++. For each compound plausible energetically low-lying structures were optimized. The methods used have been calibrated against a comprehensive tabulation of experimental electron affinities (Chemical Reviews 102, 231, 2002). The geometries predicted in this work include yet unknown anionic species, such as Ge(2)H(-), Ge(2)H(2)(-), Ge(2)H(3)(-), Ge(2)H(4)(-), and Ge(2)H(5)(-). In general, the BHLYP method predicts the geometries closest to the few available experimental structures. A number of structures rather different from the analogous well-characterized hydrocarbon radicals and anions are predicted. For example, a vinylidene-like GeGeH(2) (-) structure is the global minimum of Ge(2)H(2) (-). For neutral Ge(2)H(4), a methylcarbene-like HG?-GeH(3) is neally degenerate with the trans-bent H(2)Ge=GeH(2) structure. For the Ge(2)H(4) (-) anion, the methylcarbene-like system is the global minimum. The three different neutral-anion energy differences reported in this research are: the adiabatic electron affinity (EA(ad)), the vertical electron affinity (EA(vert)), and the vertical detachment energy (VDE). For this family of molecules the B3LYP method appears to predict the most reliable electron affinities. The adiabatic electron affinities after the ZPVE correction are predicted to be 2.02 (Ge(2)), 2.05 (Ge(2)H), 1.25 (Ge(2)H(2)), 2.09 (Ge(2)H(3)), 1.71 (Ge(2)H(4)), 2.17 (Ge(2)H(5)), and -0.02 (Ge(2)H(6)) eV. We also reported the dissociation energies for the GeH(n) (n = 1-4) and Ge(2)H(n) (n = 1-6) systems, as well as those for their anionic counterparts. Our theoretical predictions provide strong motivation for the further experimental study of these important germanium hydrides.  相似文献   

6.
The structures and magnetic properties of two products that result from the reactions of [Mn(TPA)(CH3CN)2](ClO4)2, TPA=tris(2-pyridylmethyl)amine and potassium tetracyanoethylenide, KTCNE, are reported. [Mn(TPA)(TCNE)]2[mu2-(TCNE)2] (1) and [Mn(TPA)(micro4-C4(CN)8)0.5].ClO4 (2) are obtained by using two different ratios of the initial reactants. Each was intended to possess two or more cis-TCNE radical anions (TCNE*/-) as ligands. 1 is a dinuclear species that crystallizes in the triclinic system in the space group P, with a=10.4432(17), b=12.2726(16), and c=13.708(2) A; alpha=88.505(12), beta=75.560(14), and gamma=87.077(12) degrees; V=1698.9(4) A3; and Z=1 and features two metal centers each with three nearly orthogonal TCNE*/- ligands. However, the three TCNE*/- ligands are all dimerized via the formation of four-center, two-electron bonds: two bridge the two Mn(II) centers, and a third TCNE*/- ligand forms an intermolecular bond to another equivalent TCNE*/-. 2 crystallizes in the tetragonal system in the space group P42212, with a=17.170(3), b=17.170(3), and c=17.1837(6) A; V=5065.9(13) A3; and Z=8. It consists of a ribbon-like coordination polymer containing the previously observed but still relatively rare octacyanobutyl dianion. The [C4(CN)8]2- anion is derived from the dimerization of two TCNE radical anions via the formation of a new sigma bond, and each anion bridges four Mn(II) centers. Both 1 and 2 display magnetic behavior consistent with only weak antiferromagnetic coupling between the high-spin d5 Mn(II) in which the TCNE*/- are rendered diamagnetic through dimerization.  相似文献   

7.
The 2,2,2-crypt salts of the Tl4Se8(4-) and [Tl2Se4(2-)]infinity1 anions have been obtained by extraction of the ternary alloy NaTl0.5Se in ethylenediamine (en) in the presence of 2,2,2-crypt and 18-crown-6 followed by vapor-phase diffusion of THF into the en extract. The [2,2,2-crypt-Na]4[Tl4Se8].en crystallizes in the monoclinic space group P2(1)/n, with Z = 2 and a = 14.768(3) angstroms, b = 16.635(3) angstroms, c = 21.254(4) angstroms, beta = 94.17(3) degrees at -123 degrees C, and the [2,2,2-crypt-Na]2[Tl2Se4]infinity1.en crystallizes in the monoclinic space group P2(1)/c, with Z = 4 and a = 14.246(2) angstroms, b = 14.360(3) angstroms, c = 26.673(8) angstroms, beta = 99.87(3) degrees at -123 degrees C. The TlIII anions, Tl2Se6(6-) and Tl3Se7(5-), and the mixed oxidation state TlI/TlIII anion, Tl3Se6(5-), have been obtained by extraction of NaTl0.5Se and NaTlSe in en, in the presence of 2,2,2-crypt and/or in liquid NH3, and have been characterized in solution by low-temperature 77Se, 203Tl, and 205Tl NMR spectroscopy. The 1J(203,205Tl-77Se) and 2J(203,205Tl-203,205Tl) couplings of the three anions have been used to arrive at their solution structures by detailed analyses and simulations of all spin multiplets that comprise the 205,203Tl NMR subspectra arising from natural abundance 205,203Tl and 77Se isotopomer distributions. The structure of Tl2Se6(6-) is based on a Tl2Se2 ring in which each thallium is bonded to two exo-selenium atoms so that these thalliums are four-coordinate and possess a formal oxidation state of +3. The Tl4Se8(4-) anion is formally derived from the Tl2Se6(6-) anion by coordination of each pair of terminal Se atoms to the TlIII atom of a TlSe+ cation. The structure of the [Tl2Se4(2-)]infinity1 anion is comprised of edge-sharing distorted TlSe4 tetrahedra that form infinite, one-dimensional [Tl2Se42-]infinity1 chains. The structures of Tl3Se6(5-) and Tl3Se7(5-) are derived from Tl4Se4-cubes in which one thallium atom has been removed and two and three exo-selenium atoms are bonded to thallium atoms, respectively, so that each is four-coordinate and possesses a formal oxidation state of +3 with the remaining three-coordinate thallium atom in the +1 oxidation state. Quantum mechanical calculations at the MP2 level of theory show that the Tl2Se6(6-), Tl3Se6(5-), Tl3Se7(5-), and Tl4Se8(4-) anions exhibit true minima and display geometries that are in agreement with their experimental structures. Natural bond orbital and electron localization function analyses were utilized in describing the bonding in the present and previously published Tl/Se anions, and showed that the Tl2Se6(6-), Tl3Se6(5-), Tl3Se7(5-), and Tl4Se8(4-) anions are electron-precise rings and cages.  相似文献   

8.
Rate constants and ion product channels have been measured for electron attachment to four SF5 compounds, SF5C6H5, SF5C2H3, S2F10, and SF5Br, and these data are compared to earlier results for SF6, SF5Cl, and SF5CF3. The present rate constants range over a factor of 600 in magnitude. Rate constants measured in this work at 300 K are 9.9+/-3.0x10(-8) (SF5C6H5), 7.3+/-1.8x10(-9) (SF5C2H3), 6.5+/-2.5x10(-10) (S2F10), and 3.8+/-2.0x10(-10) (SF5Br), all in cm3 s-1 units. SF5- was the sole ionic product observed for 300-550 K, though in the case of S2F10 it cannot be ascertained whether the minor SF4- and SF6- products observed in the mass spectra are due to attachment to S2F10 or to impurities. G3(MP2) electronic structure calculations (G2 for SF5Br) have been carried out for the neutrals and anions of these species, primarily to determine electron affinities and the energetics of possible attachment reaction channels. Electron affinities were calculated to be 0.88 (SF5C6H5), 0.70 (SF5C2H3), 2.95 (S2F10), and 2.73 eV (SF5Br). An anticorrelation is found for the Arrhenius A-factor with exothermicity for SF5- production for the seven molecules listed above. The Arrhenius activation energy was found to be anticorrelated with the bond strength of the parent ion.  相似文献   

9.
Density functional theory calculations were performed to obtain the structures, vertical electron affinities, and adiabatic affinities of 15 polychlorinated dibenzo-p-dioxins (PCDDs), including several extremely toxic congeners. A three-parameter hybrid density functional, B3LYP, was utilized with two different basis sets, 6-311G(d,p) and 6-311+G(2d,2p). The optimized structures of all PCDDs under consideration were planar, while all corresponding anions attained nonplanar geometries. One of the C-Cl bonds on each PCDD anion was considerably elongated, and the dechlorination of PCDDs occurred as the departing chlorine bent off the aromatic ring plane for effective pi-sigma orbital mixing. The characteristic electron energy-dependent regioselective chloride ion loss channels for 1,2,3,7,8-pentaCDD were elucidated by transition-state theory calculations. The relative low-energy barrier for the dechlorination of 1,2,3,7,8-pentaCDD indicated the high likelihood of obtaining reductive dechlorination (RD) products that are more toxic than the parent species. The calculated vertical electron affinities of PCDDs are consistent with the available experimental attachment energies, and the positive adiabatic electron affinities suggest that PCDDs may act as electron acceptors in living cells.  相似文献   

10.
Recently, Ishida and co-workers have isolated silylene radical anions via the one-electron reduction of isolable cyclic dialkylsilylenes, discovering these corresponding radical anions to be relatively stable at low temperatures. Herein we report theoretical predictions of the adiabatic electron affinities (AEA), vertical electron affinities, and vertical detachment energies of a series of methyl, silyl, and halosubstituted silylene compounds. This research utilizes the carefully calibrated DZP++ basis with the combination of the popular nonhybrid and hybrid DFT functionals, BLYP, B3LYP, and BHHLYP. The level of theory employed and the ensemble of species under study confirm the ability of silylenes to bind excess electrons with Si(SiH(3))(2) being the most effective, having a predicted AEA of 1.95 eV. While it is known that methyl substituents have a diminishing effect on the computed electron affinities (EAs), it is shown that fluorine shows an analogous negative effect. Similarly, previous suggestions that Si(CH(3))(2) will not bind an electron appear incorrect, with EA[Si(CH(3))(2)] predicted here to be 0.46 eV.  相似文献   

11.
Molecular structures, energetics, vibrational frequencies, and electron affinities are predicted for the phenylethynyl radical and its isomers. Electron affinities are computed using density functional theory, -namely, the BHLYP, BLYP, B3LYP, BP86, BPW91, and B3PW91 functionals-, employing the double-zeta plus polarization DZP++ basis set; this level of theory is known to perform well for the computation of electron affinities. Furthermore, ab initio computations employing perturbation theory, coupled cluster with single and double excitations [CCSD], and the inclusion of perturbative triples [CCSD(T)] are performed to determine the relative energies of the isomers. These higher level computations are performed with the correlation consistent family of basis sets cc-pVXZ (X = D, T, Q, 5). Three electronic states are probed for the phenylethynyl radical. In C2v symmetry, the out-of-plane (2B1) radical is predicted to lie about 10 kcal/mol below the in-plane (2B2) radical by DFT methods, which becomes 9.4 kcal/mol with the consideration of the CCSD(T) method. The energy difference between the lowest pi and sigma electronic states of the phenylethynyl radical is also about 10 kcal/mol according to DFT; however, CCSD(T) with the cc-pVQZ basis set shows this energy separation to be just 1.8 kcal/mol. The theoretical electron affinities of the phenylethynyl radical are predicted to be 3.00 eV (B3LYP/DZP++) and 3.03 eV (CCSD(T)/DZP++//MP2/DZP++). The adiabatic electron affinities (EAad) of the three isomers of phenylethynyl, that is, the ortho-, meta-, and para-ethynylphenyl, are predicted to be 1.45, 1.40, and 1.43 eV, respectively. Hence, the phenylethynyl radical binds an electron far more effectively than the three other radicals studied. Thermochemical predictions, such as the bond dissociation energies of the aromatic and ethynyl C-H bonds and the proton affinities of the phenylethynyl and ethynylphenyl anions, are also reported.  相似文献   

12.
The Tl5Se5(3-) anion has been obtained by extracting KTlSe in ethylenediamine in the presence of 2,2,2-crypt. The salt, (2,2,2-crypt-K+)3Tl5Se5(3-), crystallizes in the triclinic system, space group P1, with Z = 2 and a = 11.676(2) A, b = 16.017(3) A, c = 25.421(5) A, alpha = 82.42(3) degrees, beta = 88.47(3) degrees, gamma = 69.03(3) degrees at -123 degrees C. Two other mixed oxidation state TlI/TlIII anions; Tl4Se5(4-) and Tl4Se6(4-), have been obtained by extracting KTlSe into liquid NH3 in the presence of 2,2,2-crypt and have been characterized in solution by low-temperature 77Se, 203Tl, and 205Tl NMR spectroscopy and were shown to exist as a 1:1 equilibrium mixture at -40 degrees C. The couplings, 1J(203,205Tl-77Se) and 2J(203,205Tl-203,205Tl), have been observed for Tl4Se5(4-) and Tl4Se6(4-) and have been used to arrive at the solution structures of both anions. Structural assignments were achieved by detailed analyses and simulations of all spin multiplets that comprise the 205,203Tl NMR spectra and that arise from natural abundance 205,203Tl and 77Se or enriched 77Se isotopomer distributions. The structures of all three anions are based on a Tl4Se4 cube in which Tl and Se atoms occupy alternate corners. There are one and two exo-selenium atoms bonded to thallium in Tl4Se5(4-) and Tl4Se6(4-), respectively, so that these thalliums are four-coordinate and possess a formal oxidation state of +3 and the remaining three-coordinate thallium atoms are in the +1 oxidation state. The structure of Tl5Se5(3-) may be formally regarded as an adduct in which Tl+ is coordinated to the unique exo-selenium and to two seleniums in a cube face containing the TlIII atom. The Tl4Se5(4-), Tl4Se6(4-), and Tl5Se5(3-) anions and the presently unknown, but structurally related, Tl4Se4(4-) anion can be described as electron-precise cages. Ab initio methods at the MP2 level of theory show that Tl4Se5(4-), Tl4Se6(4-), and Tl5Se5(3-) exhibit true minima and display geometrical parameters that are in excellent agreement with their experimental cubanoid structures, and that Tl4Se4(4-) is cube-shaped (Td point symmetry). The gas-phase energetics associated with plausible routes to the formation and interconversions of these anions have been determined by ab initio methods and assessed. It is proposed that all three cubanoid anions are derived from the known Tl2Se2(2-), TlSe3(3-), Se2(2-), and polyselenide anions that have been shown to be present in the solutions they are derived from.  相似文献   

13.
Total energies of 2-, 3-, 4- and disubstituted pyridines were calculated for the salt and the free base using ab initio molecular orbital calculations at the STO-3G basis set level [2]. In each set, the difference in energy, ΔEH, between the salt and the free base was calculated and plotted against experimentally derived gas-phase proton affinities. The correlation was very good for each of the substituent categories listed. All of the energies and proton affinities were then plotted together on the same graph. The result was an excellent correlation with r = 0.97. The linear equation for gas phase proton affinity, PAB = 28.51 + 435.45ΔEH kcal/mole, was derived from this plot and was used to calculate proton affinities for all of the thirty-one compounds used in this study as well as for a series of dicyanopyridines for which values of proton affinity are not available at this time.  相似文献   

14.
Radical anions of o-, m-, and p-benzoquinone were produced in a Fourier transform mass spectrometer by low energy electron attachment or collision-induced dissociation and were differentiated. Classical derivatization experiments also were carried out to authenticate the ortho and meta anions. Gas-phase techniques were used to measure the proton affinities of all three radical anions and the electron affinities of o- and m-benzoquinone. By combining these results in thermodynamic cycles, we derived heats of hydrogenation of o-, m-, and p-benzoquinone (Delta(hyd)H degrees (1o, 1m, and 1p) = 42.8 +/- 4.1, 74.8 +/- 4.1, and 38.5 +/- 3.0 kcal mol(-)(1), respectively) and their heats of formation (Delta(f)H degrees (1o, 1m, and 1p) = -23.1 +/- 4.1, 6.8 +/- 4.1, and -27.7 +/- 3.0 kcal mol(-)(1), respectively). Good accord with the literature value for the para derivative was obtained. Combustion calorimetry and heats of sublimation also were measured for benzil and 3,5-di-tert-butyl-o-benzoquinone. The former heat of formation agreed with previous determinations, while the latter result (Delta(f)H degrees (g) = -73.09 +/- 0.87 kcal mol(-)(1)) was transformed to Delta(f)H degrees (1o) = -18.9 +/- 2.2 kcal mol(-)(1) by removing the effect of the tert-butyl groups via isodesmic reactions. This led to a final value of Delta(f)H degrees (1o) = -21.0 +/- 3.1 kcal mol(-)(1). Additivity was found to work well for m-benzoquinone, but BDE1 and BDE2 for 1,2- and 1,4-dihydroxybenzene differed by a remarkably small 14.1 +/- 4.2 and 23.5 +/- 3.7 kcal mol(-)(1), respectively, indicating that o- and p-benzoquinone should be excellent radical traps.  相似文献   

15.
Radical anions are present in several chemical processes, and understanding the reactivity of these species may be described by their thermodynamic properties. Over the last years, the formation of radical ions in the gas phase has been an important issue concerning electrospray ionization mass spectrometry studies. In this work, we report on the generation of radical anions of quinonoid compounds (Q) by electrospray ionization mass spectrometry. The balance between radical anion formation and the deprotonated molecule is also analyzed by influence of the experimental parameters (gas-phase acidity, electron affinity, and reduction potential) and solvent system employed. The gas-phase parameters for formation of radical species and deprotonated species were achieved on the basis of computational thermochemistry. The solution effects on the formation of radical anion (Q(?-)) and dianion (Q(2-)) were evaluated on the basis of cyclic voltammetry analysis and the reduction potentials compared with calculated electron affinities. The occurrence of unexpected ions [Q+15](-) was described as being a reaction between the solvent system and the radical anion, Q(?-). The gas-phase chemistry of the electrosprayed radical anions was obtained by collisional-induced dissociation and compared to the relative energy calculations. These results are important for understanding the formation and reactivity of radical anions and to establish their correlation with the reducing properties by electrospray ionization analyses.  相似文献   

16.
Wu Y  Bensch W 《Inorganic chemistry》2008,47(17):7523-7534
Four new quaternary alkali neodymium thiophosphates K 9Nd[PS 4] 4 ( 1), K 3Nd[PS 4] 2 ( 2), Cs 3Nd[PS 4] 2 ( 3), and K 3Nd 3[PS 4] 4 ( 4) were synthesized by reacting Nd with in situ formed fluxes of K 2S 3 or Cs 2S 3, P 2S 5 and S in appropriate molar ratios at 973 K. Their crystal structures are determined by single crystal X-ray diffraction. Crystal data: 1: space group C2/ c, a = 20.1894(16), b = 9.7679(5), c = 17.4930(15) A, beta = 115.66(1) degrees , and Z = 4; 2: space group P2 1/ c, a = 9.1799(7), b = 16.8797(12), c = 9.4828(7) A, beta = 90.20(1) degrees , and Z = 4; 3: space group P2 1/ n, a = 15.3641(13), b = 6.8865(4), c = 15.3902(13) A, beta = 99.19(1) degrees , and Z = 4; 4: space group C2/ c, a = 16.1496(14), b = 11.6357(7), c = 14.6784(11) A, beta = 90.40(1) degrees , and Z = 4. The structure of 1 is composed of one-dimensional (1) infinity{Nd[PS 4] 4} (9-) chains and charge balancing K (+) ions. Within the chains, eight-coordinated Nd (3+) ions, which are mixed with K (+) ions, are connected by [PS 4] (3-) tetrahedra. The crystal structures of 2 and 3 are characterized by anionic chains (1) infinity{Nd[PS 4] 2} (3-) being separated by K (+) or Cs (+) ions. Along each chain the Nd (3+) ions are bridged by [PS 4] (3-) anions. The difference between the structures of 2 and 3 is that in 2 the Nd (3+) ions are coordinated by four edge-sharing [PS 4] (3-) tetrahedra while in 3 each Nd (3+) ion is surrounded by one corner-sharing, one face-sharing, and two edge-sharing [PS 4] (3-) tetrahedra. The structure of 4 is a three-dimensional network with K (+) cations residing in tunnels running along [110] and [110]. The {Nd(1)S 8} polyhedra share common edges with four [PS 4] tetrahedra forming one-dimensional chains (1) infinity{Nd[PS 4] 2} (3-) running along [110] and [110]. The chains are linked by {Nd(2)S 8} polyhedra yielding the final three-dimensional network (3) infinity{Nd[PS 4] 2} (3-). The internal vibrations of both crystallographically independent [PS 4] (3-) anions of 2- 4 have been assigned in the range 200-650 cm (-1) by comparison of their corresponding far/mid infrared and Raman spectra (lambda exc = 488 nm) on account of locally imposed C 1 symmetry. In the Fourier-transform-Raman spectrum (lambda exc = 1064 nm) of 2- 4, very similar well-resolved electronic Raman (ER) transitions from the electronic Nd (3+) ground-state to two levels of the (4)I 9/2 ground manifold and to the six levels of the (4)I 11/2 manifold have been determined. Resonant Raman excitation via a B-term mechanism involving the (4)I 15/2 and (4)F 3/2 intermediate states may account for the significant intensity enhancement of the ER transitions with respect to the symmetric P-S stretching vibration nu 1. Broad absorptions in the UV/vis/NIR diffuse reflectance spectrum at 293 K in the range 5000-25000 cm (-1) of 2- 4 are attributed to spin-allowed excited quartet states [ (4)(I < F < S < G < D)] and spin-forbidden doublet states [ (2)(H < G < K < D < P)] of Nd (3+). A luminescense spectrum of 3 obtained at 15 K by excitation with 454.5 nm shows multiplets of narrow lines that reproduce the Nd (3+) absorptions. Sharp and intense luminescence lines are produced instead by excitation with 514.5 nm. Lines at 18681 ( (4)G 7/2), 16692 ( (4)G 5/2), 14489 ( (4)F 9/2), and 13186 cm (-1) ( (4)F 7/2) coincide with the corresponding absorptions. Hypersensitive (4)G 5/2 is split by 42 cm (-1). The most intense multiplet at about 16500 cm (-1) is assigned to the transition from (4)G 5/2 to the Stark levels of the ground manifold (4)I 9/2.  相似文献   

17.
Ab initio molecular orbital theory has been used to calculate accurate enthalpies of formation and adiabatic electron affinities or ionization potentials for N3, N3-, N5+, and N5- from total atomization energies. The calculated heats of formation of the gas-phase molecules/ions at 0 K are DeltaHf(N3(2Pi)) = 109.2, DeltaHf(N3-(1sigma+)) = 47.4, DeltaHf(N5-(1A1')) = 62.3, and DeltaHf(N5+(1A1)) = 353.3 kcal/mol with an estimated error bar of +/-1 kcal/mol. For comparison purposes, the error in the calculated bond energy for N2 is 0.72 kcal/mol. Born-Haber cycle calculations, using estimated lattice energies and the adiabatic ionization potentials of the anions and electron affinities of the cations, enable reliable stability predictions for the hypothetical N5(+)N3(-) and N5(+)N5(-) salts. The calculations show that neither salt can be stabilized and that both should decompose spontaneously into N3 radicals and N2. This conclusion was experimentally confirmed for the N5(+)N3(-) salt by low-temperature metathetical reactions between N5SbF6 and alkali metal azides in different solvents, resulting in violent reactions with spontaneous nitrogen evolution. It is emphasized that one needs to use adiabatic ionization potentials and electron affinities instead of vertical potentials and affinities for salt stability predictions when the formed radicals are not vibrationally stable. This is the case for the N5 radicals where the energy difference between vertical and adiabatic potentials amounts to about 100 kcal/mol per N5.  相似文献   

18.
Two polyoxometalate Keggin-type anions, alpha-PM12O40(3-) (M = Mo, W), were transferred to the gas phase by electrospray; their electronic structure and stability were probed by photoelectron spectroscopy. These triply charged anions were found to be highly stable in the gas phase with large adiabatic electron detachment energies of 1.7 and 2.1 eV for M = Mo and W, respectively. The magnitude of the repulsive Coulomb barrier was measured as approximately 3.4 eV for both anions, providing an experimental estimate for the intramolecular Coulomb repulsion present in these highly charged anions. Density functional theory calculations were carried out and compared with the experimental data, providing insight into the electronic structure and valence molecular orbitals of the two Keggin anions. The calculations indicated that the highest occupied molecular orbital and other frontier orbitals for PM12O40(3-) are localized primarily on the mu2-oxo bridging ligands of the polyoxometalate framework, consistent with the reactivity on the mu2-oxo sites observed in solution. It was shown that the HOMO of PW12O40(3-) is stabilized relative to that of PMo12O40(3-) by approximately 0.35 eV. The experimental adiabatic electron detachment energies of PM12O40(3-) (i.e., the electron affinities of PM12O40(2-)) are combined with recent calculations on the proton affinity of PM12O40(3-) to yield O-H bond dissociation energies in PM12O39(OH)2- as approximately 5.1 eV.  相似文献   

19.
The optimized geometries, adiabatic electron affinities, vertical electron affinities, vertical electron detachment energies (for the anions), and IR-active vibrational frequencies have been predicted for the long linear carbon chains HC(2)(n)()(+1)H (n = 4-11). The B3LYP density functional combined with DZP and TZ2P basis sets was used in this theoretical study. These methods have been extensively calibrated versus experiment for the prediction of electron affinities (Chem. Rev. 2002, 102, 231). The computed physical properties are discussed and compared with the even carbon chains HC(2)(n)()H. The predicted electron affinities form a remarkably regular sequence: 2.12 eV (HC(9)H), 2.42 eV (HC(11)H), 2.66 eV (HC(13)H), 2.85 eV (HC(15)H), 3.01 eV (HC(17)H), 3.14 eV (HC(19)H), 3.25 eV (HC(21)H), and 3.35 eV (HC(23)H). These electron affinities are as much as 0.4 eV higher than those for analogous even carbon chains. The predicted structures display an intermediate cumulene-polyacetylene type of bonding, with the inner carbons appearing cumulenic and the outer carbons polyacetylenic.  相似文献   

20.
Rate constants have been measured for electron attachment to C5F5N (297-433 K) and to 2, 3, 5, 6-C5HF4N (303 K) using a flowing-afterglow Langmuir-probe apparatus (at a He gas pressure of 133 Pa). In both cases only the parent anion was formed in the attachment process. The attachment rate constants measured at room temperature are 1.8 +/- 0.5 X 10(-7) and 7 +/- 3 X 10(-10) cm(-3) s(-1), respectively. Rate constants were also measured for thermal electron detachment from the parent anions of these molecules. For C5F5N- detachment is negligible at room temperature, but increases to 2530 +/- 890 s(-1) at 433 K. For 2, 3, 5, 6-C5HF4N-, the detachment rate at 303 K was 520 +/- 180 s(-1). The attachment/detachment equilibrium yielded experimental electron affinities EA(C5F5N)=0.70 +/- 0.05 eV and EA(2, 3, 5, 6-C5HF4N)=0.40 +/- 0.08 eV. Electronic structure calculations were carried out for these molecules and related C5HxF5-xN using density-functional theory and the G3(MP2)//B3LYP compound method. The EAs are found to decrease by 0.25 eV, on average, with each F substitution by H. The calculated EAs are in good agreement with the present experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号